Stability of Sasaki-Extremal Metrics under Complex Deformations

被引:9
|
作者
van Coevering, Craig [1 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
关键词
KAHLER; MANIFOLDS;
D O I
10.1093/imrn/rns210
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the stability of Sasaki-extremal metrics under deformations of the transversal complex structure of the foliation F-xi induced by the Reeb vector field xi. Let g be a Sasaki-extremal metric on M, G a compact connected subgroup of the automorphism group of the Sasaki structure, and suppose the reduced scalar curvature satisfies s(g)(G) = 0. And consider a G-equivariant deformation (F-xi, (J) over bar (t))(t is an element of B) of the transversely holomorphic foliation preserving F-xi as a smooth foliation. Provided the Futaki invariant relative to G of g is nondegenerate, the existence of Sasaki-extremal metrics is preserved under small variations of t is an element of B and of the Reeb vector xi is an element of z in the center of g. If G = T subset of Aut(g, xi) is a maximal torus, the nondegeneracy of the Futaki invariant is automatic. So such deformations provide the easiest examples. When the initial metric g is Sasaki-Einstein and G = T subset of Aut(g, xi) is a maximal torus a slice of the above family of Sasaki-extremal metrics is Sasaki-Einstein. Thus, for each t is an element of B, there is a xi(t) is an element of xi(z) so that the Sasaki-extremal metric with Reeb vector field xi(t) is Sasaki-Einstein. We apply this to deformations of toric 3-Sasaki 7-manifolds to obtain new families of Sasaki-Einstein metrics on these manifolds, which are deformations of 3-Sasaki metrics.
引用
收藏
页码:5527 / 5570
页数:44
相关论文
共 50 条
  • [21] Deformation of extremal metrics, complex manifolds and the relative Futaki invariant
    Rollin, Yann
    Simanca, Santiago R.
    Tipler, Carl
    MATHEMATISCHE ZEITSCHRIFT, 2013, 273 (1-2) : 547 - 568
  • [22] EXTREMAL KAHLER-METRICS AND COMPLEX DEFORMATION-THEORY
    LEBRUN, C
    SIMANCA, SR
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 1994, 4 (03) : 298 - 336
  • [23] Deformation of extremal metrics, complex manifolds and the relative Futaki invariant
    Yann Rollin
    Santiago R. Simanca
    Carl Tipler
    Mathematische Zeitschrift, 2013, 273 : 547 - 568
  • [24] STABILITY OF KAHLER-METRICS IN DEFORMATIONS OF NON-COMPACT COMPLEX-MANIFOLDS OF DIMENSION-2
    TAKEGOSHI, K
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1984, 20 (05) : 1053 - 1061
  • [25] Deformations of Constant Scalar Curvature Sasakian Metrics and K-Stability
    van Coevering, Craig
    Tipler, Carl
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (22) : 11566 - 11604
  • [26] Hamiltonian 2-forms in Kahler geometry, III Extremal metrics and stability
    Apostolov, Vestislav
    Calderbank, DavidM. J.
    Gauduchon, Paul
    Tonnesen-Friedman, Christina W.
    INVENTIONES MATHEMATICAE, 2008, 173 (03) : 547 - 601
  • [27] STABILITY OF MULTILAYER COMPOSITES UNDER INELASTIC DEFORMATIONS
    SKACHENKO, AV
    SOVIET APPLIED MECHANICS, 1979, 15 (08): : 756 - 758
  • [28] Positivity cones under deformations of complex structures
    Bellitir, Houda
    Popovici, Dan
    RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA, 2018, 9 (01): : 133 - 176
  • [29] Hamiltonian 2-forms in Kähler geometry, III extremal metrics and stability
    Vestislav Apostolov
    David M.J. Calderbank
    Paul Gauduchon
    Christina W. Tønnesen-Friedman
    Inventiones mathematicae, 2008, 173 : 547 - 601
  • [30] Stability of Einstein metrics under Ricci flow
    Kroencke, Klaus
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2020, 28 (02) : 351 - 394