Stability of Sasaki-Extremal Metrics under Complex Deformations

被引:9
|
作者
van Coevering, Craig [1 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
关键词
KAHLER; MANIFOLDS;
D O I
10.1093/imrn/rns210
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the stability of Sasaki-extremal metrics under deformations of the transversal complex structure of the foliation F-xi induced by the Reeb vector field xi. Let g be a Sasaki-extremal metric on M, G a compact connected subgroup of the automorphism group of the Sasaki structure, and suppose the reduced scalar curvature satisfies s(g)(G) = 0. And consider a G-equivariant deformation (F-xi, (J) over bar (t))(t is an element of B) of the transversely holomorphic foliation preserving F-xi as a smooth foliation. Provided the Futaki invariant relative to G of g is nondegenerate, the existence of Sasaki-extremal metrics is preserved under small variations of t is an element of B and of the Reeb vector xi is an element of z in the center of g. If G = T subset of Aut(g, xi) is a maximal torus, the nondegeneracy of the Futaki invariant is automatic. So such deformations provide the easiest examples. When the initial metric g is Sasaki-Einstein and G = T subset of Aut(g, xi) is a maximal torus a slice of the above family of Sasaki-extremal metrics is Sasaki-Einstein. Thus, for each t is an element of B, there is a xi(t) is an element of xi(z) so that the Sasaki-extremal metric with Reeb vector field xi(t) is Sasaki-Einstein. We apply this to deformations of toric 3-Sasaki 7-manifolds to obtain new families of Sasaki-Einstein metrics on these manifolds, which are deformations of 3-Sasaki metrics.
引用
收藏
页码:5527 / 5570
页数:44
相关论文
共 50 条
  • [1] Relative K-stability and extremal Sasaki metrics
    Boyer, Charles P.
    van Coevering, Craig
    MATHEMATICAL RESEARCH LETTERS, 2018, 25 (01) : 1 - 19
  • [2] The Sasaki Cone and Extremal Sasakian Metrics
    Boyer, Charles P.
    Galicki, Krzysztof
    Simanca, Santiago R.
    RIEMANNIAN TOPOLOGY AND GEOMETRIC STRUCTURES ON MANIFOLDS, 2009, 271 : 263 - 290
  • [3] STABILITY UNDER DEFORMATIONS OF EXTREMAL ALMOST-KAHLER METRICS IN DIMENSION 4.
    Lejmi, Mehdi
    MATHEMATICAL RESEARCH LETTERS, 2010, 17 (04) : 601 - 612
  • [4] Weighted K-stability and coercivity with applications to extremal Kähler and Sasaki metrics
    Apostolov, Vestislav
    Jubert, Simon
    Lahdili, Abdellah
    GEOMETRY & TOPOLOGY, 2023, 27 (08) : 3229 - +
  • [5] The CR geometry of weighted extremal Kahler and Sasaki metrics
    Apostolov, Vestislav
    Calderbank, David M. J.
    MATHEMATISCHE ANNALEN, 2021, 379 (3-4) : 1047 - 1088
  • [6] The CR geometry of weighted extremal Kähler and Sasaki metrics
    Vestislav Apostolov
    David M. J. Calderbank
    Mathematische Annalen, 2021, 379 : 1047 - 1088
  • [7] Relative stability and extremal metrics
    Mabuchi, Toshiki
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2014, 66 (02) : 535 - 563
  • [8] Extremal metrics and geometric stability
    Tian, G
    HOUSTON JOURNAL OF MATHEMATICS, 2002, 28 (02): : 411 - 432
  • [9] CONFORMAL DEFORMATIONS AND EXTREMAL PATHS IN SPACE OF RIEMANNIAN METRICS
    EHRLICH, PE
    MATHEMATISCHE NACHRICHTEN, 1976, 72 : 137 - 140
  • [10] Existence and non-existence of constant scalar curvature and extremal Sasaki metrics
    Boyer, Charles P.
    Huang, Hongnian
    Legendre, Eveline
    Tonnesen-Friedman, Christina W.
    MATHEMATISCHE ZEITSCHRIFT, 2023, 304 (04)