Multiview Cluster Analysis Identifies Variable Corticosteroid Response Phenotypes in Severe Asthma

被引:87
|
作者
Wu, Wei [1 ]
Bang, Seojin [1 ]
Bleecker, Eugene R. [2 ]
Castro, Mario [3 ]
Denlinger, Loren [4 ]
Erzurum, Serpil C. [5 ]
Fahy, John V. [6 ]
Fitzpatrick, Anne M. [7 ]
Gaston, Benjamin M. [8 ]
Hastie, Annette T. [9 ]
Israel, Elliot [10 ,11 ]
Jarjour, Nizar N. [4 ]
Levy, Bruce D. [10 ,11 ]
Mauger, David T. [12 ]
Meyers, Deborah A. [2 ]
Moore, Wendy C. [9 ]
Peters, Michael [6 ]
Phillips, Brenda R. [12 ]
Phipatanakul, Wanda [11 ,13 ]
Sorkness, Ronald L. [4 ]
Wenzel, Sally E. [14 ]
机构
[1] Carnegie Mellon Univ, Sch Comp Sci, Computat Biol Dept, 5000 Forbes Ave, Pittsburgh, PA 15213 USA
[2] Univ Arizona, Dept Med, Tucson, AZ USA
[3] Washington Univ, St Louis, MO 63110 USA
[4] Univ Wisconsin Madison, Madison, WI USA
[5] Cleveland Clin, Cleveland, OH 44106 USA
[6] Univ Calif San Francisco, San Francisco, CA 94143 USA
[7] Emory Univ, Atlanta, GA 30322 USA
[8] Case Western Reserve Univ, Sch Med, Cleveland, OH USA
[9] Wake Forest Univ, Bowman Gray Sch Med, Winston Salem, NC USA
[10] Harvard Med Sch, Boston, MA 02115 USA
[11] Brigham & Womens Hosp, 75 Francis St, Boston, MA 02115 USA
[12] Penn State Univ, University Pk, PA 16802 USA
[13] Boston Childrens Hosp, Boston, MA USA
[14] Univ Pittsburgh, Grad Sch Publ Hlth, Dept Environm & Occupat Hlth, Pittsburgh, PA 15261 USA
关键词
asthma phenotype; corticosteroids; severe asthma; eosinophils; TRABECULAR MESHWORK CELLS; FLUCTUATION ANALYSIS; LUNG; DEXAMETHASONE; ONSET; AGE;
D O I
10.1164/rccm.201808-1543OC
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
Rationale: Corticosteroids (CSs) are the most effective asthma therapy, but responses are heterogeneous and systemic CSs lead to long-term side effects. Therefore, an improved understanding of the contributing factors in CS responses could enhance precision management. Although several factors have been associated with CS responsiveness, no integrated/cluster approach has yet been undertaken to identify differential CS responses. Objectives: To identify asthma subphenotypes with differential responses to CS treatment using an unsupervised multiview learning approach. Methods: Multiple-kernel k-means clustering was applied to 100 clinical, physiological, inflammatory, and demographic variables from 346 adult participants with asthma in the Severe Asthma Research Program with paired (before and 2-3 weeks after triamcinolone administration) sputum data. Machine-learning techniques were used to select the top baseline variables that predicted cluster assignment for a new patient. Measurements and Main Results: Multiple-kernel clustering revealed four clusters of individuals with asthma and different CS responses. Clusters 1 and 2 consisted of young, modestly CS-responsive individuals with allergic asthma and relatively normal lung function, separated by contrasting sputum neutrophil and macrophage percentages after CS treatment. The subjects in cluster 3 had late-onset asthma and low lung function, high baseline eosinophilia, and the greatest CS responsiveness. Cluster 4 consisted primarily of young, obese females with severe airflow limitation, little eosinophilic inflammation, and the least CS responsiveness. The top 12 baseline variables were identizied, and the clusters were validated using an independent Severe Asthma Research Program test set. Conclusions: Our machine learning-based approaches provide new insights into the mechanisms of CS responsiveness in asthma, with the potential to improve disease treatment.
引用
收藏
页码:1358 / 1367
页数:10
相关论文
共 50 条
  • [21] FASE-CPHG Study: Identification of asthma phenotypes in the French Severe Asthma Study using cluster analysis
    Raherison-Semjen, Chantal
    Prudhomme, Anne
    Nocent-Eijnani, Cecilia
    Oster, Jean-Philippe
    Maurer, Cyril
    Coetmoeur, Daniel
    Lemaire, Bertrand
    Didi, Toufik
    Parrat, Eric
    Debieuvre, Didier
    Portel, Laurent
    EUROPEAN RESPIRATORY JOURNAL, 2018, 52
  • [22] Cluster Analysis Identifies Clinical Phenotypes of Primary Hyperhidrosis
    Henning, Mattias A. S.
    Jemec, Gregor B. E.
    Pedersen, Ole B.
    Taudorf, Elisabeth H.
    SKIN PHARMACOLOGY AND PHYSIOLOGY, 2025, 37 (4-6) : 63 - 69
  • [23] FASE-CPHG Study: identification of asthma phenotypes in the French Severe Asthma Study using cluster analysis
    Raherison-Semjen, Chantal
    Parrat, Eric
    Nocent-Eijnani, Cecilia
    Mangiapan, Gilles
    Prudhomme, Anne
    Oster, Jean-Philippe
    de Vecchi, Corinne Aperre
    Maurer, Cyril
    Debieuvre, Didier
    Portel, Laurent
    RESPIRATORY RESEARCH, 2021, 22 (01)
  • [24] Integrative approach identifies corticosteroid response variant in diverse populations with asthma
    Levin, Albert M.
    Gui, Hongsheng
    Hernandez-Pacheco, Natalia
    Yang, Mao
    Xiao, Shujie
    Yang, James J.
    Hochstadt, Samantha
    Barczak, Andrea J.
    Eckalbar, Walter L.
    Rynkowski, Dean
    Samedy, Lesly-Anne
    Kwok, Pui-Yan
    Pino-Yanes, Maria
    Erle, David J.
    Lanfear, David E.
    Burchard, Esteban G.
    Williams, L. Keoki
    JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2019, 143 (05) : 1791 - 1802
  • [25] 3He lung scanning identifies different phenotypes of severe asthma
    Prys-Picard, CO
    Woodhouse, N
    Wild, JM
    Van Beek, EJR
    Niven, RM
    THORAX, 2004, 59 : 51 - 51
  • [26] The Use Of CT To Characterize Cluster Phenotypes In The Severe Asthma Research Program
    Trivedi, A.
    Sheshadri, A.
    Goss, C.
    Sieren, J.
    Escher, M.
    Schutz, R.
    Li, H.
    Schechtman, K.
    Moore, W. C.
    Bleecker, E.
    Hoffman, E.
    Castro, M.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2017, 195
  • [27] PREDICTORS OF RESPONSE TO MEPOLIZUMAB IN ORAL CORTICOSTEROID DEPENDENT SEVERE ASTHMA
    Kavanagh, J. E.
    Green, L.
    Fernandes, M.
    Roxas, C.
    Jackson, D. J.
    Kent, B.
    d'Ancona, G.
    THORAX, 2018, 73 : A49 - A50
  • [28] Novel Machine Learning Identifies Five Asthma Phenotypes Using Cluster Analysis of Real-world Data
    Wu, C.
    Sleiman, J.
    Attaway, A.
    Bleecker, E. R.
    Chedraoui, C.
    Battoul, F.
    Meyers, D. A.
    Zein, J. G.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2023, 207
  • [29] Novel Machine Learning Identifies 5 Asthma Phenotypes Using Cluster Analysis of Real-World Data
    Wu, Chao-Ping
    Sleiman, Joelle
    Fakhry, Battoul
    Chedraoui, Celine
    Attaway, Amy
    Bhattacharyya, Anirban
    Bleecker, Eugene R.
    Erdemir, Ahmet
    Hu, Bo
    Kethireddy, Shravan
    Meyers, Deborah A.
    Rashidi, Hooman H.
    Zein, Joe G.
    JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE, 2024, 12 (08):
  • [30] Asthma phenotypes in low income children: A cluster analysis
    Sousa, Andrey
    Cabral, Anna
    Martins, Milton
    Mendes, Felipe
    Carvalho, Celso
    EUROPEAN RESPIRATORY JOURNAL, 2016, 48