Multiview Cluster Analysis Identifies Variable Corticosteroid Response Phenotypes in Severe Asthma

被引:87
|
作者
Wu, Wei [1 ]
Bang, Seojin [1 ]
Bleecker, Eugene R. [2 ]
Castro, Mario [3 ]
Denlinger, Loren [4 ]
Erzurum, Serpil C. [5 ]
Fahy, John V. [6 ]
Fitzpatrick, Anne M. [7 ]
Gaston, Benjamin M. [8 ]
Hastie, Annette T. [9 ]
Israel, Elliot [10 ,11 ]
Jarjour, Nizar N. [4 ]
Levy, Bruce D. [10 ,11 ]
Mauger, David T. [12 ]
Meyers, Deborah A. [2 ]
Moore, Wendy C. [9 ]
Peters, Michael [6 ]
Phillips, Brenda R. [12 ]
Phipatanakul, Wanda [11 ,13 ]
Sorkness, Ronald L. [4 ]
Wenzel, Sally E. [14 ]
机构
[1] Carnegie Mellon Univ, Sch Comp Sci, Computat Biol Dept, 5000 Forbes Ave, Pittsburgh, PA 15213 USA
[2] Univ Arizona, Dept Med, Tucson, AZ USA
[3] Washington Univ, St Louis, MO 63110 USA
[4] Univ Wisconsin Madison, Madison, WI USA
[5] Cleveland Clin, Cleveland, OH 44106 USA
[6] Univ Calif San Francisco, San Francisco, CA 94143 USA
[7] Emory Univ, Atlanta, GA 30322 USA
[8] Case Western Reserve Univ, Sch Med, Cleveland, OH USA
[9] Wake Forest Univ, Bowman Gray Sch Med, Winston Salem, NC USA
[10] Harvard Med Sch, Boston, MA 02115 USA
[11] Brigham & Womens Hosp, 75 Francis St, Boston, MA 02115 USA
[12] Penn State Univ, University Pk, PA 16802 USA
[13] Boston Childrens Hosp, Boston, MA USA
[14] Univ Pittsburgh, Grad Sch Publ Hlth, Dept Environm & Occupat Hlth, Pittsburgh, PA 15261 USA
关键词
asthma phenotype; corticosteroids; severe asthma; eosinophils; TRABECULAR MESHWORK CELLS; FLUCTUATION ANALYSIS; LUNG; DEXAMETHASONE; ONSET; AGE;
D O I
10.1164/rccm.201808-1543OC
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
Rationale: Corticosteroids (CSs) are the most effective asthma therapy, but responses are heterogeneous and systemic CSs lead to long-term side effects. Therefore, an improved understanding of the contributing factors in CS responses could enhance precision management. Although several factors have been associated with CS responsiveness, no integrated/cluster approach has yet been undertaken to identify differential CS responses. Objectives: To identify asthma subphenotypes with differential responses to CS treatment using an unsupervised multiview learning approach. Methods: Multiple-kernel k-means clustering was applied to 100 clinical, physiological, inflammatory, and demographic variables from 346 adult participants with asthma in the Severe Asthma Research Program with paired (before and 2-3 weeks after triamcinolone administration) sputum data. Machine-learning techniques were used to select the top baseline variables that predicted cluster assignment for a new patient. Measurements and Main Results: Multiple-kernel clustering revealed four clusters of individuals with asthma and different CS responses. Clusters 1 and 2 consisted of young, modestly CS-responsive individuals with allergic asthma and relatively normal lung function, separated by contrasting sputum neutrophil and macrophage percentages after CS treatment. The subjects in cluster 3 had late-onset asthma and low lung function, high baseline eosinophilia, and the greatest CS responsiveness. Cluster 4 consisted primarily of young, obese females with severe airflow limitation, little eosinophilic inflammation, and the least CS responsiveness. The top 12 baseline variables were identizied, and the clusters were validated using an independent Severe Asthma Research Program test set. Conclusions: Our machine learning-based approaches provide new insights into the mechanisms of CS responsiveness in asthma, with the potential to improve disease treatment.
引用
收藏
页码:1358 / 1367
页数:10
相关论文
共 50 条
  • [1] Multiview Cluster Analysis Identifies Variable Corticosteroid Response Phenotypes in Severe Asthma (vol 199, pg 1358, 2019)
    Wu, W.
    Bang, S.
    Bleecker, E. R.
    Castro, M.
    Denlinger, L.
    Erzurum, S. C.
    Fahy, J., V
    Fitzpatrick, A. M.
    Gaston, B. M.
    Hastie, A. T.
    Israel, E.
    Jarjour, N. N.
    Levy, B. D.
    Mauger, D. T.
    Meyers, D. A.
    Moore, W. C.
    Peters, M.
    Phillips, B. R.
    Phipatanakul, W.
    Sorkness, R. L.
    Wenzel, S. E.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2019, 200 (03) : 400 - 400
  • [2] Cluster Analysis Identifies 3 Phenotypes within Allergic Asthma
    Paz Sendin-Hernandez, Maria
    Avila-Zarza, Carmelo
    Sanz, Catalina
    Garcia-Sanchez, Asuncion
    Marcos-Vadillo, Elena
    Munoz-Bellido, Francisco J.
    Laffond, Elena
    Domingo, Christian
    Isidoro-Garcia, Maria
    Davila, Ignacio
    JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE, 2018, 6 (03): : 955 - +
  • [3] IMPULSE OSCILLOMETRY IDENTIFIES DISTINCT ASTHMA PHENOTYPES ON CLUSTER ANALYSIS
    Padukudru, Sunag
    Parthasarathi, Ashwaghosha
    Shankar, Malavika
    Praveena, A. S.
    Krishna, Mamidipudi Thirumala
    Anand, Mahesh Padukudru
    CHEST, 2022, 162 (04) : 2644A - 2644A
  • [4] Prognostic value of cluster analysis of severe asthma phenotypes
    Bourdin, Arnaud
    Molinari, Nicolas
    Vachier, Isabelle
    Varrin, Muriel
    Marin, Gregory
    Gamez, Anne-Sophie
    Paganin, Fabrice
    Chanez, Pascal
    JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2014, 134 (05) : 1043 - 1050
  • [5] Identification of Asthma Phenotypes Using Cluster Analysis in the Severe Asthma Research Program
    Moore, W. C.
    Meyers, D. A.
    Li, H.
    D'Agostino, R.
    Peters, S. P.
    Bleecker, E. R.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2009, 179
  • [6] Identification of Asthma Phenotypes Using Cluster Analysis in the Severe Asthma Research Program
    Moore, Wendy C.
    Meyers, Deborah A.
    Wenzel, Sally E.
    Teague, W. Gerald
    Li, Huashi
    Li, Xingnan
    D'Agostino, Ralph, Jr.
    Castro, Mario
    Curran-Everett, Douglas
    Fitzpatrick, Anne M.
    Gaston, Benjamin
    Jarjour, Nizar N.
    Sorkness, Ronald
    Calhoun, William J.
    Chung, Kian Fan
    Comhair, Suzy A. A.
    Dweik, Raed A.
    Israel, Elliot
    Peters, Stephen P.
    Busse, William W.
    Erzurum, Serpil C.
    Bleecker, Eugene R.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2010, 181 (04) : 315 - 323
  • [7] Cluster analysis identifies characteristic phenotypes of asthma with accelerated lung function decline
    Sakagami, Takuro
    Hasegawa, Takashi
    Koya, Toshiyuki
    Furukawa, Toshiki
    Kawakami, Hidenori
    Kimura, Yosuke
    Hoshino, Yoshifumi
    Sakamoto, Hirotaka
    Shima, Kenjiro
    Kagamu, Hiroshi
    Suzuki, Ei-ichi
    Narita, Ichiei
    JOURNAL OF ASTHMA, 2014, 51 (02) : 113 - 118
  • [8] Electronic Noses Capture Severe Asthma Phenotypes By Unbiased Cluster Analysis
    Brinkman, P.
    Wagener, A. H.
    Bansal, A. T.
    Knobel, H. H.
    Vink, T. J.
    Rattray, N.
    Santonico, M.
    Pennazza, G.
    Montuschi, P.
    Fowler, S. J.
    Sterk, P. J.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2014, 189
  • [9] Phenotypes determined by cluster analysis in severe or difficult-to-treat asthma
    Schatz, Michael
    Hsu, Jin-Wen Y.
    Zeiger, Robert S.
    Chen, Wansu
    Dorenbaum, Alejandro
    Chipps, Bradley E.
    Haselkorn, Tmirah
    JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2014, 133 (06) : 1549 - 1556
  • [10] Effectiveness of benralizumab in severe eosinophilic asthma: Distinct sub-phenotypes of response identified by cluster analysis
    Di Bona, Danilo
    Crimi, Claudia
    D'Uggento, Angela Maria
    Benfante, Alida
    Caiaffa, Maria Filomena
    Calabrese, Cecilia
    Campisi, Raffaele
    Carpagnano, Giovanna Elisiana
    Ciotta, Domenico
    D'Amato, Maria
    Pelaia, Corrado
    Pelaia, Girolamo
    Pellegrino, Simona
    Scichilone, Nicola
    Scioscia, Giulia
    Ribecco, Nunziata
    Spadaro, Giuseppe
    Valenti, Giuseppe
    Vatrella, Alessandro
    Crimi, Nunzio
    Macchia, Luigi
    CLINICAL AND EXPERIMENTAL ALLERGY, 2022, 52 (02): : 312 - 323