THE SEMICLASSICAL LIMIT OF THE TIME DEPENDENT HARTREE-FOCK EQUATION: THE WEYL SYMBOL OF THE SOLUTION

被引:22
|
作者
Amour, Laurent [1 ]
Khodja, Mohamed [1 ]
Nourrigat, Jean [1 ]
机构
[1] Univ Reims, Lab Math Reims, FR CNRS 3399, EA 4535, F-51687 Reims, France
来源
ANALYSIS & PDE | 2013年 / 6卷 / 07期
关键词
time dependent Hartree-Fock equation; Vlasov equation; semiclassical analysis; Egorov theorem; pseudodifferential operators; MEAN-FIELD LIMIT; DYNAMICS; SYSTEMS;
D O I
10.2140/apde.2013.6.1649
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a family of solutions to the time dependent Hartree-Fock equation, depending on the semiclassical parameter h, we prove that if at the initial time the Weyl symbol of the solution is in L-1(R-2n) as well as all its derivatives, then this property is true for all time, and we give an asymptotic expansion in powers of h of this Weyl symbol. The main term of the asymptotic expansion is a solution to the Vlasov equation, and the error term is estimated in the norm of L-1(R-2n).
引用
收藏
页码:1649 / 1674
页数:26
相关论文
共 50 条
  • [11] Scattering theory for time-dependent Hartree-Fock type equation
    Wada, T
    OSAKA JOURNAL OF MATHEMATICS, 1999, 36 (04) : 905 - 918
  • [12] HARTREE-FOCK IN THE THERMODYNAMIC LIMIT
    DOHNERT, L
    DELLANO, M
    PLASTINO, A
    ACTA CIENTIFICA VENEZOLANA, 1978, 29 : 72 - 72
  • [13] Numerical solution of the Hartree-Fock equation in molecular geometries
    Talman, James D.
    PHYSICAL REVIEW A, 2010, 82 (05):
  • [14] SOLUTION OF HARTREE-FOCK EQUATION IN TERMS OF OCALIZED ORBITALS
    ADAMS, WH
    JOURNAL OF CHEMICAL PHYSICS, 1961, 34 (01): : 89 - &
  • [15] HARTREE-FOCK TIME-DEPENDENT PROBLEM
    BOVE, A
    DAPRATO, G
    FANO, G
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 49 (01) : 25 - 33
  • [16] TIME-DEPENDENT HARTREE-FOCK EQUATIONS
    SMET, F
    TILLIEU, J
    VANGROENENDAEL, A
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1980, 17 (03) : 531 - 547
  • [17] Time-dependent projected Hartree-Fock
    Tsuchimochi, Takashi
    Van Voorhisa, Troy
    JOURNAL OF CHEMICAL PHYSICS, 2015, 142 (12):
  • [18] TIME-DEPENDENT HARTREE-FOCK AND BEYOND
    GOEKE, K
    CUSSON, RY
    GRUMMER, F
    REINHARD, PG
    REINHARDT, H
    SUPPLEMENT OF THE PROGRESS OF THEORETICAL PHYSICS, 1983, (74-7): : 33 - 65
  • [20] Mean field dynamics of fermions and the time-dependent Hartree-Fock equation
    Bardos, C
    Golse, F
    Gottlieb, AD
    Mauser, NJ
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2003, 82 (06): : 665 - 683