共 50 条
The independence number in graphs of maximum degree three
被引:16
|作者:
Harant, Jochen
[1
]
Henning, Michael A.
[2
]
Rautenbach, Dieter
[1
]
Schiermeyer, Ingo
[3
]
机构:
[1] Tech Univ Ilmenau, Inst Math, D-98684 Ilmenau, Germany
[2] Univ Kwazulu Natal, Sch Math Sci, ZA-3209 Pietermaritzburg, South Africa
[3] Tech Univ Bergakad Freiberg, Inst Diskrete Math & Algebra, D-09596 Freiberg, Germany
关键词:
Independence;
Triangle;
Cubic graph;
D O I:
10.1016/j.disc.2007.10.029
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We prove that a K-4-free graph G of order n, size in and maximum degree at most three has an independent set of cardinality at least 1/7 (4n - m - lambda - tr), where lambda counts the number of components of G whose blocks are each either isomorphic to one of four specific graphs or edges between two of these four specific graphs and tr is the maximum number of vertex-disjoint triangles in G. Our result generalizes a bound due to Heckman and Thomas [C.C. Heckman, R. Thomas, A new proof of the independence ratio of triangle-free cubic graphs, Discrete Math. 233 (2001) 233-237]. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:5829 / 5833
页数:5
相关论文