The independence number in graphs of maximum degree three

被引:16
|
作者
Harant, Jochen [1 ]
Henning, Michael A. [2 ]
Rautenbach, Dieter [1 ]
Schiermeyer, Ingo [3 ]
机构
[1] Tech Univ Ilmenau, Inst Math, D-98684 Ilmenau, Germany
[2] Univ Kwazulu Natal, Sch Math Sci, ZA-3209 Pietermaritzburg, South Africa
[3] Tech Univ Bergakad Freiberg, Inst Diskrete Math & Algebra, D-09596 Freiberg, Germany
关键词
Independence; Triangle; Cubic graph;
D O I
10.1016/j.disc.2007.10.029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that a K-4-free graph G of order n, size in and maximum degree at most three has an independent set of cardinality at least 1/7 (4n - m - lambda - tr), where lambda counts the number of components of G whose blocks are each either isomorphic to one of four specific graphs or edges between two of these four specific graphs and tr is the maximum number of vertex-disjoint triangles in G. Our result generalizes a bound due to Heckman and Thomas [C.C. Heckman, R. Thomas, A new proof of the independence ratio of triangle-free cubic graphs, Discrete Math. 233 (2001) 233-237]. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:5829 / 5833
页数:5
相关论文
共 50 条