Nonlinear waves of the Hirota and the Maxwell-Bloch equations in nonlinear optics

被引:13
|
作者
Li Chuan-Zhong [1 ]
He Jing-Song [1 ]
Porseizan, K. [2 ,3 ]
机构
[1] Ningbo Univ, Dept Math, Ningbo 315211, Zhejiang, Peoples R China
[2] Pondicherry Univ, Dept Phys, Pondicherry 605014, India
[3] Univ Jena, Inst Condensed Matter Theory & Solid State Opt, D-07743 Jena, Germany
基金
中国国家自然科学基金;
关键词
Hirota and Maxwell-Bloch equations; nonlinear optics; rogue wave; SOLITONS; PROPAGATION; GUIDE;
D O I
10.1088/1674-1056/22/4/044208
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, considering the Hirota and the Maxwell-Bloch (H-MB) equations which are governed by femtosecond pulse propagation through a two-level doped fiber system, we construct the Darboux transformation of this system through a linear eigenvalue problem. Using this Daurboux transformation, we generate multi-soliton, positon, and breather solutions (both bright and dark breathers) of the H-MB equations. Finally, we also construct the rogue wave solutions of the above system.
引用
收藏
页数:10
相关论文
共 50 条
  • [22] Solving the multi-level Maxwell-Bloch equations using GPGPU computing for the simulation of nonlinear optics in atomic gases
    Costa, J. C.
    Gomes, M.
    Alves, R. A.
    Silva, N. A.
    Guerreiro, A.
    THIRD INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICS, 2017, 10453
  • [23] Nonautonomous characteristics of the breathers and rogue waves for a amplifier nonlinear Schrodinger Maxwell-Bloch system
    Wang, Lei
    Li, Xiao
    Zhang, Lu Lu
    Li, Min
    Qi, Feng-Hua
    EUROPEAN PHYSICAL JOURNAL D, 2015, 69 (09):
  • [24] MULTISOLITON SOLUTIONS OF A COUPLED SYSTEM OF THE NONLINEAR SCHRODINGER-EQUATION AND THE MAXWELL-BLOCH EQUATIONS
    KAKEI, S
    SATSUMA, J
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1994, 63 (03) : 885 - 894
  • [25] Inhomogeneous reduced Maxwell-Bloch system in nonlinear optics: Darboux-transformation and solitonic issues
    Shen Y.
    Tian B.
    Zhou T.-Y.
    Gao X.-T.
    Optik, 2023, 285
  • [26] MULTI-OPTICAL ROGUE WAVES OF THE MAXWELL-BLOCH EQUATIONS
    Xu, Shuwei
    Porsezian, K.
    He, Jingsong
    Cheng, Yi
    ROMANIAN REPORTS IN PHYSICS, 2016, 68 (01) : 316 - 340
  • [27] Time discretizations for Maxwell-Bloch equations
    Bidégaray, B
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2003, 19 (03) : 284 - 300
  • [28] Nonlinear tunneling of nonautonomous optical solitons in combined nonlinear Schrodinger and Maxwell-Bloch systems
    Rajan, M. S. Mani
    Mahalingam, A.
    Uthayakumar, A.
    JOURNAL OF OPTICS, 2012, 14 (10)
  • [29] Nonautonomous characteristics of the breathers and rogue waves for a amplifier nonlinear Schrödinger Maxwell-Bloch system
    Lei Wang
    Xiao Li
    Lu Lu Zhang
    Min Li
    Feng-Hua Qi
    The European Physical Journal D, 2015, 69
  • [30] ROUTES TO CHAOS IN THE MAXWELL-BLOCH EQUATIONS
    MILONNI, PW
    ACKERHALT, JR
    SHIH, ML
    OPTICS COMMUNICATIONS, 1985, 53 (02) : 133 - 136