Large deviations for the 2-D derivative Ginzburg-Landau equation with multiplicative noise

被引:1
|
作者
Pu, Xueke [1 ]
Huang, Ting [2 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R China
[2] Chongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R China
关键词
Large deviations; Stochastic 2-D derivative; Ginzburg-Landau equation; Laplace principle; Weak convergence method;
D O I
10.1016/j.aml.2019.01.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proves a Wentzell-Freidlin type large deviation principle for the 2-D derivative Ginzburg-Landau equation perturbed by a small multiplicative noise, based on the Laplace principle and weak convergence approach. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:46 / 51
页数:6
相关论文
共 50 条
  • [11] Stochastic Ginzburg-Landau equation on a half-line driven by the multiplicative noise
    Juarez-Campos, B.
    Kaikina, E., I
    Vazquez-Esquivel, A. V.
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (04)
  • [12] Global existence of solutions to the derivative 2D Ginzburg-Landau equation
    Li, YS
    Guo, BL
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 249 (02) : 412 - 432
  • [13] Exponential Attractor of the 3D Derivative Ginzburg-Landau Equation
    Shu Juan L(?) Qi Shao LU Department of Mathematics & LMIB
    Acta Mathematica Sinica(English Series), 2008, 24 (05) : 809 - 828
  • [14] Regularity of Attractor for 3D Derivative Ginzburg-Landau Equation
    Lu, Shujuan
    Feng, Zhaosheng
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2014, 11 (01) : 89 - 108
  • [15] Exponential attractor of the 3D derivative Ginzburg-Landau equation
    Lue, Shu Juan
    Lu, Qi Shao
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (05) : 809 - 828
  • [16] Exponential attractor of the 3D derivative Ginzburg-Landau equation
    Shu Juan Lü
    Qi Shao Lu
    Acta Mathematica Sinica, English Series, 2008, 24 : 809 - 828
  • [17] Random attractor of stochastic complex Ginzburg-Landau equation with multiplicative noise on unbounded domain
    Guo, Y. F.
    Li, D. L.
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2017, 35 (03) : 409 - 422
  • [18] A new approach to large deviations for the Ginzburg-Landau model
    Banerjee, Sayan
    Budhiraja, Amarjit
    Perlmutter, Michael
    ELECTRONIC JOURNAL OF PROBABILITY, 2020, 25
  • [19] Large deviations for the Ginzburg-Landau delφ interface model
    Funaki, T
    Nishikawa, T
    PROBABILITY THEORY AND RELATED FIELDS, 2001, 120 (04) : 535 - 568
  • [20] FLUCTUATIONS IN DOMAIN GROWTH - GINZBURG-LANDAU EQUATIONS WITH MULTIPLICATIVE NOISE
    RAMIREZPISCINA, L
    HERNANDEZMACHADO, A
    SANCHO, JM
    PHYSICAL REVIEW B, 1993, 48 (01): : 119 - 124