Absorption strength in absorbing chaotic cavities

被引:11
|
作者
Baez, G. [1 ]
Martinez-Mares, M. [2 ]
Mendez-Sanchez, R. A. [3 ]
机构
[1] Univ Autonoma Metropolitana Azcapotzalco, Area Fis Teor & Mat Condensada, Mexico City 04000, DF, Mexico
[2] Univ Autonoma Metropolitana Iztapalapa, Dept Fis, Mexico City 09340, DF, Mexico
[3] Univ Nacl Autonoma Mexico, Inst Ciencias Fis, Cuernavaca 62210, Morelos, Mexico
来源
PHYSICAL REVIEW E | 2008年 / 78卷 / 03期
关键词
D O I
10.1103/PhysRevE.78.036208
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We derive an exact formula to calculate the absorption strength in absorbing chaotic systems such as microwave cavities or acoustic resonators. The formula allows us to estimate the absorption strength as a function of the averaged reflection coefficient and the real coupling parameter. We also define the weak and strong absorption regimes in terms of the coupling parameter and the absorption strength.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Field matching analysis of abrupt cavities with absorbing materials
    Luo, Y
    Li, HF
    Xie, ZL
    Yu, S
    Deng, X
    Zhao, Q
    Xu, Y
    ACTA PHYSICA SINICA, 2004, 53 (01) : 229 - 234
  • [32] PREDICTION OF SOUND FIELDS IN CAVITIES WITH SOUND ABSORBING MATERIALS
    UTSUNO, H
    WU, TW
    SEYBERT, AF
    TANAKA, T
    AIAA JOURNAL, 1990, 28 (11) : 1870 - 1876
  • [33] Shot noise by quantum scattering in chaotic cavities
    Oberholzer, S
    Sukhorukov, EV
    Strunk, C
    Schönenberger, C
    Heinzel, T
    Holland, M
    PHYSICAL REVIEW LETTERS, 2001, 86 (10) : 2114 - 2117
  • [34] Joint statistics of quantum transport in chaotic cavities
    Cunden, Fabio Deelan
    Facchi, Paolo
    Vivo, Pierpaolo
    EPL, 2015, 110 (05)
  • [35] TIME-REVERSAL MIRRORS IN CHAOTIC CAVITIES
    Calvo, H. L.
    Pastawski, H. M.
    Jalabert, R. A.
    COMPLEX PHENOMENA IN NANOSCALE SYSTEMS, 2009, : 37 - +
  • [36] Lasing threshold and mode competition in chaotic cavities
    Misirpashaev, TS
    Beenakker, CWJ
    PHYSICAL REVIEW A, 1998, 57 (03): : 2041 - 2045
  • [37] Presence of asymmetric noise in multiterminal chaotic cavities
    Barbosa, A. L. R.
    Ramos, J. G. G. S.
    Bazeia, D.
    PHYSICAL REVIEW B, 2011, 84 (11)
  • [38] Lasing threshold and mode competition in chaotic cavities
    Missipashaev, T. Sh.
    Beenakker, C.W.J.
    Physical Review A. Atomic, Molecular, and Optical Physics, 1998, 57 (03):
  • [39] Fractal conductance fluctuations in generic chaotic cavities
    Ketzmerick, R
    PHYSICAL REVIEW B, 1996, 54 (15): : 10841 - 10844
  • [40] Nonlinear statistics of quantum transport in chaotic cavities
    Savin, D. V.
    Sommers, H. -J.
    Wieczorek, W.
    PHYSICAL REVIEW B, 2008, 77 (12):