A Model for Verifiable Grounding and Execution of Complex Natural Language Instructions

被引:0
|
作者
Boteanu, Adrian [1 ]
Howard, Thomas [2 ]
Arkin, Jacob [2 ]
Kress-Gazit, Hadas [1 ]
机构
[1] Cornell Univ, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14853 USA
[2] Univ Rochester, Hajim Sch Engn & Appl Sci, 601 Elmwood Ave, Rochester, NY 14627 USA
基金
美国国家科学基金会;
关键词
SCHEMAS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Current methods of grounding natural language instructions do not include reactive or temporal components, making these methods unsuitable for instructions describing tasks as sets of conditional instructions. We introduce the Verifiable Distributed Correspondence Graph (V-DCG) model, which enables the validation of natural language instructions by using Linear Temporal Logic (LTL) specifications together with physical world groundings. We demonstrate the V-DCG model on a physical robot and provide examples of the output our system produces for natural language instructions.
引用
收藏
页码:2649 / 2654
页数:6
相关论文
共 50 条
  • [31] Coupling Distributed and Symbolic Execution for Natural Language Queries
    Mou, Lili
    Lu, Zhengdong
    Li, Hang
    Jin, Zhi
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [32] Attention Based Natural Language Grounding by Navigating Virtual Environment
    Sinha, Abhishek
    Akilesh, B.
    Sarkar, Mausoom
    Krishnamurthy, Balaji
    2019 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2019, : 236 - 244
  • [33] Draw Me a Flower: Processing and Grounding Abstraction in Natural Language
    Lachmy, Royi
    Pyatkin, Valentina
    Manevich, Avshalom
    Tsarfaty, Reut
    TRANSACTIONS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, 2022, 10 : 1341 - 1356
  • [34] SQLUCID: Grounding Natural Language Database Qeries with Interactive Explanations
    Tian, Yuan
    Kummerfeld, Jonathan K.
    Li, Toby Jia-Jun
    Zhang, Tianyi
    PROCEEDINGS OF THE 37TH ANNUAL ACM SYMPOSIUM ON USER INTERFACE SOFTWARE AND TECHNOLOGY, USIT 2024, 2024,
  • [35] Boost Tracking by Natural Language With Prompt-Guided Grounding
    Li, Hengyou
    Liu, Xinyan
    Li, Guorong
    Wang, Shuhui
    Qing, Laiyun
    Huang, Qingming
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2025, 26 (01) : 1088 - 1100
  • [36] Trimodal Navigable Region Segmentation Model: Grounding Navigation Instructions in Urban Areas
    Hosomi, Naoki
    Hatanaka, Shumpei
    Iioka, Yui
    Yang, Wei
    Kuyo, Katsuyuki
    Misu, Teruhisa
    Yamada, Kentaro
    Sugiura, Komei
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (05) : 4162 - 4169
  • [37] TALE - A temporal active language and execution model
    Gal, A
    Etzion, O
    Segev, A
    ADVANCED INFORMATION SYSTEMS ENGINEERING, 1996, 1080 : 60 - 81
  • [38] Translating Natural Language Instructions to Computer Programs for Robot Manipulation
    Venkatesh, Sagar Gubbi
    Upadrashta, Raviteja
    Antrutur, Bharadwaj
    2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 1919 - 1926
  • [39] Few-Shot Text Generation with Natural Language Instructions
    Schick, Timo
    Schuetze, Hinrich
    2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 390 - 402
  • [40] Spatial Reasoning from Natural Language Instructions for Robot Manipulation
    Venkatesh, Sagar Gubbi
    Biswas, Anirban
    Upadrashta, Raviteja
    Srinivasan, Vikram
    Talukdar, Partha
    Amrutur, Bharadwaj
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 11196 - 11202