An MOLP based procedure for finding efficient units in DEA models

被引:13
|
作者
Lotfi, F. Hosseinzadeh [1 ]
Noora, A. A. [2 ]
Jahanshahloo, G. R. [3 ]
Jablonsky, J. [4 ]
Mozaffari, M. R. [1 ]
Gerami, J. [1 ]
机构
[1] Islamic Azad Univ, Dept Math, Sci & Res Branch, Tehran, Iran
[2] Univ Sistan & Baluchestan, Dept Math, Zahedan, Iran
[3] Tarbiat Moallem Univ, Dept Math, Tehran, Iran
[4] Univ Econ Prague, Dept Econometr, Prague, Czech Republic
关键词
Data envelopment analysis; Multiple objective linear programming; Linear programming; DATA ENVELOPMENT ANALYSIS; DECISION-MAKING UNITS; RESTRICTIONS;
D O I
10.1007/s10100-008-0071-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper a multiple objective linear programming (MOLP) problem whose feasible region is the production possibility set with variable returns to scale is proposed. By solving this MOLP problem by multicriterion simplex method, the extreme efficient Pareto points can be obtained. Then the extreme efficient units in data envelopment analysis (DEA) with variable returns to scale, considering the specified theorems and conditions, can be obtained. Therefore, by solving the proposed MOLP problem, the non-dominant units in DEA can be found. Finally, a numerical example is provided.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 50 条
  • [21] Relationship between MOLP and DEA based on output-orientated CCR dual model
    Lotfi, F. Hosseinzadeh
    Jahanshahloo, G. R.
    Soltanifar, M.
    Ebrahimnejad, A.
    Mansourzadeh, S. M.
    EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (06) : 4331 - 4336
  • [22] CROWDING DISTANCE DEVELOPMENT FOR RANKING EFFICIENT UNITS IN DEA
    Davoodi, A. L. I. R. E. Z. A.
    Rezai, Hamed Zhiani
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2023, 19 (08) : 5902 - 5915
  • [23] A polynomial-time algorithm for finding ε in DEA models
    Amin, GR
    Toloo, M
    COMPUTERS & OPERATIONS RESEARCH, 2004, 31 (05) : 803 - 805
  • [24] A DEA based procedure for the selection of subgroups
    Contreras, I.
    Brey, R.
    Carazo, A. F.
    Brey, J. J.
    APPLIED MATHEMATICAL MODELLING, 2014, 38 (17-18) : 4538 - 4547
  • [25] Finding the most efficient DMUs in DEA: An improved integrated model
    Amin, Gholam R.
    Toloo, M.
    COMPUTERS & INDUSTRIAL ENGINEERING, 2007, 52 (01) : 71 - 77
  • [26] Using lexicographic parametric programming for identifying efficient units in DEA
    Korhonen, Pekka J.
    Siitari, Pyry-Antti
    COMPUTERS & OPERATIONS RESEARCH, 2007, 34 (07) : 2177 - 2190
  • [27] Improving the discriminating power of DEA: focus on globally efficient units
    Despotis, DK
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2002, 53 (03) : 314 - 323
  • [28] The maximum and minimum number of efficient units in DEA with interval data
    Haghighat, MS
    Khorram, E
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 163 (02) : 919 - 930
  • [29] Ranking DEA efficient units with the most compromising common weights
    Liu, Fuh-Hwa Franklin
    Peng, Hao-Hsuan
    Chang, Hong-Wei
    Operations Research and Its Applications, 2006, 6 : 219 - 234
  • [30] Sensitivity analysis of extreme efficient decision making units in DEA
    Daneshvar, S.
    Jahanshahloo, G.R.
    Memariani, A.
    Mohtadi, S. Saati
    Journal of Interdisciplinary Mathematics, 2002, 5 (03) : 195 - 201