ROTHE'S METHOD FOR PHYSIOLOGICALLY STRUCTURED MODELS WITH DIFFUSION

被引:1
|
作者
Bartlomiejczyk, Agnieszka [1 ]
Leszcznski, Henryk [2 ]
Marciniak, Agnieszka [2 ]
机构
[1] Gdansk Univ Technol, Fac Appl Phys & Math, Gabriela Narutowicza 11-12, Gdansk, Poland
[2] Univ Gdansk, Inst Math, Wita Stwosza 57, Gdansk, Poland
关键词
size-structured model; Feller boundary condition; diffusion; maximum principle; Rothe's method;
D O I
10.1515/ms-2017-0094
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider structured population models with diffusion and dynamic boundary conditions. The respective approximation, called Rothe's method, produces positive and exponentially bounded solutions. Its solutions converge to the exact solution of the original PDE. (C) 2018 Mathematical Institute Slovak Academy of Sciences
引用
收藏
页码:211 / 224
页数:14
相关论文
共 50 条
  • [41] Numerical Bifurcation Analysis of Physiologically Structured Population Models via Pseudospectral Approximation
    Scarabel, Francesca
    Breda, Dimitri
    Diekmann, Odo
    Gyllenberg, Mats
    Vermiglio, Rossana
    VIETNAM JOURNAL OF MATHEMATICS, 2021, 49 (01) : 37 - 67
  • [42] PSPManalysis: Steady-state and bifurcation analysis of physiologically structured population models
    de Roos, Andre M.
    METHODS IN ECOLOGY AND EVOLUTION, 2021, 12 (02): : 383 - 390
  • [43] Approximation of random diffusion by nonlocal diffusion in age-structured models
    Hao Kang
    Shigui Ruan
    Zeitschrift für angewandte Mathematik und Physik, 2021, 72
  • [44] Approximation of random diffusion by nonlocal diffusion in age-structured models
    Kang, Hao
    Ruan, Shigui
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (03):
  • [45] ROTHE'S METHOD FOR NONLINEAR PARABOLIC VARIATIONAL INEQUALITIES IN NONCYLINDRICAL DOMAINS
    Kulieva, Gulchehra
    Kuliev, Komil
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2020, 12 (03): : 227 - 242
  • [46] Johannes Rothe's 'Elisabethleben'.
    Seelbach, Sabine
    ZEITSCHRIFT FUR DEUTSCHES ALTERTUM UND DEUTSCHE LITERATUR, 2007, 136 (03): : 411 - 415
  • [47] Regularization and Rothe's method for two-phase Stefan problems
    Noack, A
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2001, 81 : S1017 - S1018
  • [48] THE ROTHE METHOD FOR NONLINEAR HYPERBOLIC PROBLEMS
    MARTENSEN, E
    LECTURE NOTES IN MATHEMATICS, 1986, 1192 : 387 - 392
  • [49] Numerical Bifurcation Analysis of Physiologically Structured Populations: Consumer–Resource, Cannibalistic and Trophic Models
    Julia Sánchez Sanz
    Philipp Getto
    Bulletin of Mathematical Biology, 2016, 78 : 1546 - 1584
  • [50] Numerical continuation of equilibria of physiologically structured population models. I. Theory
    Kirkilionis, MA
    Diekmann, O
    Lisser, B
    Nool, M
    Sommeijer, B
    De Roos, AM
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2001, 11 (06): : 1101 - 1127