Linear Clique-Width for Hereditary Classes of Cographs

被引:9
|
作者
Brignall, Robert [1 ]
Korpelainen, Nicholas [2 ]
Vatter, Vincent [3 ]
机构
[1] Open Univ, Dept Math & Stat, Milton Keynes, Bucks, England
[2] Univ Derby, Math Dept, Derby, England
[3] Univ Florida, Dept Math, Gainesville, FL 32611 USA
基金
英国工程与自然科学研究理事会;
关键词
linear clique-width; cographs; threshold graphs; quasi-threshold graphs; clique-width; NLC-WIDTH; GRAPHS;
D O I
10.1002/jgt.22037
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The class of cographs is known to have unbounded linear clique-width. We prove that a hereditary class of cographs has bounded linear clique-width if and only if it does not contain all quasi-threshold graphs or their complements. The proof borrows ideas from the enumeration of permutation classes. (C) 2016 Wiley Periodicals, Inc.
引用
收藏
页码:501 / 511
页数:11
相关论文
共 50 条
  • [31] INTRACTABILITY OF CLIQUE-WIDTH PARAMETERIZATIONS
    Fomin, Fedor V.
    Golovach, Petr A.
    Lokshtanov, Daniel
    Saurabh, Saket
    SIAM JOURNAL ON COMPUTING, 2010, 39 (05) : 1941 - 1956
  • [32] Between Treewidth and Clique-Width
    Saether, Sigve Hortemo
    Telle, Jan Arne
    ALGORITHMICA, 2016, 75 (01) : 218 - 253
  • [33] Clique-width with an inactive label
    Meister, Daniel
    DISCRETE MATHEMATICS, 2014, 337 : 34 - 64
  • [34] Clique-Width of Graph Classes Defined by Two Forbidden Induced Subgraphs
    Dabrowski, Konrad K.
    Paulusma, Daniel
    ALGORITHMS AND COMPLEXITY (CIAC 2015), 2015, 9079 : 167 - 181
  • [35] Clique-width and parity games
    Obdrzalek, Jan
    Computer Science Logic, Proceedings, 2007, 4646 : 54 - 68
  • [36] Clique-width of point configurations
    Cagirici, Onur
    Hlineny, Petr
    Pokryvka, Filip
    Sankaran, Abhisekh
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2023, 158 : 43 - 73
  • [37] The relative clique-width of a graph
    Lozin, Vadim
    Rautenbach, Dieter
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (05) : 846 - 858
  • [38] Exploiting Restricted Linear Structure to Cope with the Hardness of Clique-Width
    Heggernes, Pinar
    Meister, Daniel
    Rotics, Udi
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, PROCEEDINGS, 2010, 6108 : 284 - +
  • [39] Linear Clique-Width of Bi-complement Reducible Graphs
    Alecu, Bogdan
    Lozin, Vadim
    Zamaraev, Viktor
    COMBINATORIAL ALGORITHMS, IWOCA 2018, 2018, 10979 : 14 - 25
  • [40] Approximating clique-width and branch-width
    Oum, Sang-il
    Seymour, Paul
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2006, 96 (04) : 514 - 528