Linear Clique-Width for Hereditary Classes of Cographs

被引:9
|
作者
Brignall, Robert [1 ]
Korpelainen, Nicholas [2 ]
Vatter, Vincent [3 ]
机构
[1] Open Univ, Dept Math & Stat, Milton Keynes, Bucks, England
[2] Univ Derby, Math Dept, Derby, England
[3] Univ Florida, Dept Math, Gainesville, FL 32611 USA
基金
英国工程与自然科学研究理事会;
关键词
linear clique-width; cographs; threshold graphs; quasi-threshold graphs; clique-width; NLC-WIDTH; GRAPHS;
D O I
10.1002/jgt.22037
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The class of cographs is known to have unbounded linear clique-width. We prove that a hereditary class of cographs has bounded linear clique-width if and only if it does not contain all quasi-threshold graphs or their complements. The proof borrows ideas from the enumeration of permutation classes. (C) 2016 Wiley Periodicals, Inc.
引用
收藏
页码:501 / 511
页数:11
相关论文
共 50 条
  • [1] On the clique-width of graphs in hereditary classes
    Boliac, R
    Lozin, V
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2002, 2518 : 44 - 54
  • [2] Clique-width for hereditary graph classes
    Dabrowski, Konrad K.
    Johnson, Matthew
    Paulusma, Daniel
    SURVEYS IN COMBINATORICS 2019, 2019, 456 : 1 - 56
  • [3] MSO undecidability for hereditary classes of unbounded clique-width
    Dawar, Anuj
    Sankaran, Abhisekh
    EUROPEAN JOURNAL OF COMBINATORICS, 2025, 123
  • [4] Between clique-width and linear clique-width of bipartite graphs
    Alecu, Bogdan
    Kante, Mamadou Moustapha
    Lozin, Vadim
    Zamaraev, Viktor
    DISCRETE MATHEMATICS, 2020, 343 (08)
  • [5] A FRAMEWORK FOR MINIMAL HEREDITARY CLASSES OF GRAPHS OF UNBOUNDED CLIQUE-WIDTH
    Brignall, R.
    Cocks, D.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2023, 37 (04) : 2558 - 2584
  • [6] Uncountably many minimal hereditary classes of graphs of unbounded clique-width
    Brignall, R.
    Cocks, D.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (01): : 1 - 27
  • [7] Clique-width and the speed of hereditary properties
    Allen, Peter
    Lozin, Vadim
    Rao, Michael
    ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01):
  • [8] The clique-width of bipartite graphs in monogenic classes
    Lozin, Vadim V.
    Volz, Jordan
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2008, 19 (02) : 477 - 494
  • [9] New Graph Classes of Bounded Clique-Width
    Andreas Brandstädt
    Feodor F. Dragan
    Hoàng-Oanh Le
    Raffaele Mosca
    Theory of Computing Systems, 2005, 38 : 623 - 645
  • [10] Minimal Classes of Graphs of Unbounded Clique-Width
    Vadim V. Lozin
    Annals of Combinatorics, 2011, 15 : 707 - 722