A general method for determining the contribution of split pathways in metabolite production in the yeast Saccharomyces cerevisiae

被引:10
|
作者
Woldman, Y [1 ]
Appling, DR [1 ]
机构
[1] Univ Texas, Inst Cellular & Mol Biol, Dept Chem & Biochem, Austin, TX 78712 USA
关键词
D O I
10.1006/mben.2001.0221
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
We describe a simple method using C-13 labeling and NMR spectroscopy to determine the flux contributions of alternative pathways in Saccharomyces cerevisiae that produce the same metabolite with identical labeling patterns. Cells were incubated with a C-13-labeled precursor for one of the branches, and the absolute enrichment of the product and its metabolic precursor(s) was quantified. The ratio of the absolute enrichment of the product to that of its precursor reflects the contribution of the pathway. The method was applied to the biosynthesis of glycine in yeast, which can occur from threonine via threonine aldolase or from serine via serine hydroxymethyltransferase. [2-C-13]Aspartate and [2-C-13]serine were used as labeled precursors for the threonine aldolase and serine hydroxymethyltransferase pathways, respectively. The data show that in cells possessing both pathways, the serine hydroxymethyltransferase pathway contributes 65-75% of the total glycine production. In comparison with other approaches, this method provides an inexpensive, flexible alternative to determining the flux contributions of split pathways under controlled conditions and should have wide applicability in the metabolic engineering of microorganisms. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:170 / 181
页数:12
相关论文
共 50 条
  • [21] Processing watermelon waste using Saccharomyces cerevisiae yeast and the fermentation method for bioethanol production
    Jahanbakhshi, Ahmad
    Salehi, Rouhollah
    JOURNAL OF FOOD PROCESS ENGINEERING, 2019, 42 (07)
  • [22] Engineering Saccharomyces cerevisiae fermentative pathways for the production of isobutanol
    Ofuonye, Ebele
    Kutin, Kwesi
    Stuart, David T.
    BIOFUELS-UK, 2013, 4 (02): : 185 - 201
  • [23] A RAPID METHOD FOR SYNCHRONIZING DIVISION IN YEAST, SACCHAROMYCES CEREVISIAE
    WILLIAMSON, DH
    SCOPES, AW
    NATURE, 1962, 193 (4812) : 256 - &
  • [24] Yeast artificial chromosomes employed for random assembly of biosynthetic pathways and production of diverse compounds in Saccharomyces cerevisiae
    Michael Naesby
    Søren VS Nielsen
    Curt AF Nielsen
    Trine Green
    Thomas Ø Tange
    Ernesto Simón
    Philipp Knechtle
    Anders Hansson
    Markus S Schwab
    Olca Titiz
    Christophe Folly
    Roberto E Archila
    Milena Maver
    Stephan van Sint Fiet
    Thiamo Boussemghoune
    Michael Janes
    A S Sathish Kumar
    Shailendra P Sonkar
    Partha P Mitra
    V Ajai Kumar Benjamin
    Nimitha Korrapati
    Inala Suman
    Esben H Hansen
    Tanja Thybo
    Neil Goldsmith
    Alexandra Santana Sorensen
    Microbial Cell Factories, 8
  • [25] Yeast artificial chromosomes employed for random assembly of biosynthetic pathways and production of diverse compounds in Saccharomyces cerevisiae
    Naesby, Michael
    Nielsen, Soren V. S.
    Nielsen, Curt A. F.
    Green, Trine
    Tange, Thomas O.
    Simon, Ernesto
    Knechtle, Philipp
    Hansson, Anders
    Schwab, Markus S.
    Titiz, Olca
    Folly, Christophe
    Archila, Roberto E.
    Maver, Milena
    Fiet, Stephan van Sint
    Boussemghoune, Thiamo
    Janes, Michael
    Kumar, A. S. Sathish
    Sonkar, Shailendra P.
    Mitra, Partha P.
    Benjamin, V. Ajai Kumar
    Korrapati, Nimitha
    Suman, Inala
    Hansen, Esben H.
    Thybo, Tanja
    Goldsmith, Neil
    Sorensen, Alexandra Santana
    MICROBIAL CELL FACTORIES, 2009, 8
  • [26] Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae
    Grant, CM
    MacIver, FH
    Dawes, IW
    CURRENT GENETICS, 1996, 29 (06) : 511 - 515
  • [27] Vacuole biogenesis in Saccharomyces cerevisiae:: Protein transport pathways to the yeast vacuole
    Bryant, NJ
    Stevens, TH
    MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 1998, 62 (01) : 230 - +
  • [28] Long-chain Alkane Production by the Yeast Saccharomyces cerevisiae
    Buijs, Nicolaas A.
    Zhou, Yongjin J.
    Siewers, Verena
    Nielsen, Jens
    BIOTECHNOLOGY AND BIOENGINEERING, 2015, 112 (06) : 1275 - 1279
  • [29] Selection of thermotolerant yeast strains Saccharomyces cerevisiae for bioethanol production
    Edgardo, Araque
    Carolina, Parra
    Manuel, Rodriguez
    Juanita, Freer
    Jaime, Baeza
    ENZYME AND MICROBIAL TECHNOLOGY, 2008, 43 (02) : 120 - 123
  • [30] PROTOPLAST PRODUCTION IN HAPLOID SACCHAROMYCES CEREVISIAE AND PETITE MUTANTS OF THIS YEAST
    WHITTAKER, PA
    ANDREWS, KR
    MICROBIOS, 1969, 1 (1B) : 99 - +