Singular analytical integration for efficient Volume Integral Equation implementation

被引:0
|
作者
Perez Soler, F. J. [1 ]
Quesada Pereira, F. D. [1 ]
Alvarez Melcon, A. [1 ]
Peregrini, L. [2 ]
机构
[1] Tech Univ Cartagena, Campus Muralla Mar S-N, Cartagena 30202, Spain
[2] Univ Pavia, I-27100 Pavia, Italy
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a novel efficient implementation of the Volume Integral Equation formulation, for the analysis of printed circuits with finite size dielectric objects. The singularity of the Green's functions is extracted from the kernel of the integral equation, as static terms. These terms are then evaluated analytically for coincident rectangular cells in two and three dimensions. A semi-analytical formulation is also derived for the interactions involving adjacent cells. Results show the gain in efficiency and accuracy that can be obtained in the frame of the Volume Integral Equation formulation, when the new analytical techniques are used.
引用
收藏
页码:82 / +
页数:2
相关论文
共 50 条
  • [31] Product integration method for treating a nonlinear Volterra integral equation with a weakly singular kernel
    Ahlem Nemer
    Zouhir Mokhtari
    Hanane Kaboul
    Mathematical Sciences, 2022, 16 : 71 - 78
  • [32] Product integration method for treating a nonlinear Volterra integral equation with a weakly singular kernel
    Nemer, Ahlem
    Mokhtari, Zouhir
    Kaboul, Hanane
    MATHEMATICAL SCIENCES, 2022, 16 (01) : 71 - 78
  • [33] The high accuracy algorithm for Cauchy singular integral and Cauchy singular integral equation
    Zeng, Guang
    Huang, Jin
    Jia, Hong-yan
    2010 4TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING (ICBBE 2010), 2010,
  • [34] Efficient Implementation of Inner-Outer Flexible GMRES for the Method of Moments Based on a Volume-Surface Integral Equation
    Chiba, Hidetoshi
    Fukasawa, Toru
    Miyashita, Hiroaki
    Konishi, Yoshihiko
    IEICE TRANSACTIONS ON ELECTRONICS, 2011, E94C (01) : 24 - 31
  • [35] Efficient Matrix Filling for a Volume-Surface Integral Equation Method
    Li, Xianjin
    Hu, Jun
    Chen, Yongpin
    Lei, Lin
    Jiang, Ming
    Rong, Zhi
    PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2019, : 222 - 224
  • [36] ON CERTAIN SINGULAR INTEGRAL EQUATION 2
    JONES, DS
    JOURNAL OF MATHEMATICS AND PHYSICS, 1964, 43 (03): : 263 - &
  • [37] A Liapunov functional for a singular integral equation
    Burton, T. A.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (12) : 3873 - 3882
  • [38] SINGULAR INTEGRAL-EQUATION WITH A SHIFT
    CHERSKY, YI
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1980, (12): : 15 - 18
  • [39] A NOTE ON A SINGULAR INTEGRAL-EQUATION
    MANDAL, BN
    GOSWAMI, SK
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1983, 14 (11): : 1352 - 1356
  • [40] A NOTE ON A SINGULAR INTEGRAL-EQUATION
    CHAKRABARTI, A
    WILLIAMS, WE
    JOURNAL OF THE INSTITUTE OF MATHEMATICS AND ITS APPLICATIONS, 1980, 26 (03): : 321 - 323