Fast Kernel Distribution Function Estimation and fast kernel density estimation based on sparse Bayesian learning and regularization

被引:3
|
作者
Yin, Xun-Fu [1 ]
Hao, Zhi-Feng [2 ]
机构
[1] S China Univ Technol, Coll Comp Sci & Engn, Guangzhou 510640, Peoples R China
[2] S China Univ Technol, Sch Math Sci, Guangzhou 510640, Peoples R China
基金
中国国家自然科学基金;
关键词
fast kernel density estimation; sparse Bayesian learning; mean integrated squared error; III-posed problem; regularization; jittering; relevance vector;
D O I
10.1109/ICMLC.2008.4620689
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we develop a novel method of obtaining very sparse representation of Kernel Distribution Function Estimation (KDFE) and Kernel Density Estimation (KDE) exploiting Sparse Bayesian Regression (SBR) technique with the aidance of regularization by jittering. SBR introduces a parameterized sparsity-inducing prior on the unknown parameters of the linear model. After reviewing the existent methodologies of fast kernel density estimation, we adapt SBR to the problem of construction of sparse KDFE and KDE. Numerical results of preliminary simulation studies on synthetic data demonstrate the effectiveness of our algorithm which can achieve sparser representation of KDE than SVM-based algorithm and can produce more precise estimate than traditional full-sample KDE algorithm.
引用
收藏
页码:1756 / +
页数:2
相关论文
共 50 条
  • [31] Trajectory Learning and Analysis Based on Kernel Density Estimation
    Zhou, Jianying
    Wang, Kunfeng
    Tang, Shuming
    Wang, Fei-Yue
    2009 12TH INTERNATIONAL IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC 2009), 2009, : 178 - 183
  • [32] On kernel estimation of a multivariate distribution function
    Jin, ZZ
    Shao, YZ
    STATISTICS & PROBABILITY LETTERS, 1998, 41 (02) : 163 - 168
  • [33] A fully Bayesian approach to kernel-based regularization for impulse response estimation
    Gonzalez, Rodrigo A.
    Rojas, Cristian R.
    IFAC PAPERSONLINE, 2018, 51 (15): : 186 - 191
  • [34] Clutter Identification Based on Kernel Density Estimation and sparse-recovery
    Wang, Haokun
    Xiang, Yijian
    Dagois, Elise
    Kelsey, Malia
    Sen, Satyabrata
    Nehorai, Arye
    Akcakaya, Murat
    COMPRESSIVE SENSING VII: FROM DIVERSE MODALITIES TO BIG DATA ANALYTICS, 2018, 10658
  • [35] Robust sparse kernel density estimation by inducing randomness
    Chen, Fei
    Yu, Huimin
    Yao, Jincao
    Hu, Roland
    PATTERN ANALYSIS AND APPLICATIONS, 2015, 18 (02) : 367 - 375
  • [36] Robust sparse kernel density estimation by inducing randomness
    Fei Chen
    Huimin Yu
    Jincao Yao
    Roland Hu
    Pattern Analysis and Applications, 2015, 18 : 367 - 375
  • [37] A Bayesian Approach to Parameter Estimation for Kernel Density Estimation via Transformations
    Liu, Qing
    Pitt, David
    Zhang, Xibin
    Wu, Xueyuan
    ANNALS OF ACTUARIAL SCIENCE, 2011, 5 (02) : 181 - 193
  • [38] Bayesian estimation of adaptive bandwidth matrices in multivariate kernel density estimation
    Zougab, Nabil
    Adjabi, Smail
    Kokonendji, Celestin C.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 75 : 28 - 38
  • [39] Wide-band DOA Estimation Method Based on Fast Sparse Bayesian Learning
    Zhao, Lifan
    Wang, Lu
    Bi, Guoan
    2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 7890 - 7895
  • [40] On fast estimation of direction of arrival for underwater acoustic target based on sparse Bayesian learning
    WANG Biao
    ZHU Zhihui
    DAI Yuewei
    Chinese Journal of Acoustics, 2017, 36 (01) : 102 - 112