NON-INTEGRABILITY OF GENERALIZED YANG-MILLS HAMILTONIAN SYSTEM

被引:10
|
作者
Shi, Shaoyun [1 ,2 ]
Li, Wenlei [1 ]
机构
[1] Jilin Univ, Coll Math, Changchun 130012, Peoples R China
[2] Jilin Univ, Minist Educ, Key Lab Symbol Computat & Knowledge Engn, Changchun 130012, Peoples R China
关键词
Non-integrability; Yang-Mills system; Morales-Ramis theory; Lame equation; higher order variational equations; INTEGRABILITY;
D O I
10.3934/dcds.2013.33.1645
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the generalized Yang-Mills system with Hamiltonian H = 1/2(y(1)(2) + y(2)(2)) + 1/2(ax(1)(2) + bx(2)(2)) + 1/4cx(1)(4) + 1/4dx(2)(4) + 1/2ex(1)(2)x(2)(2) is meromorphically integrable in Liouvillian sense(i.e., the existence of an additional meromorphic first integral) if and only if (A) e = 0, or (B) c = d = e, or (C) a = b, e = 3 c = 3 d, or (D) b = 4a, e = 3c, d = 8c, or (E) b = 4a, e = 6c, d = 16c, or (F) b = 4a, e = 3d, c = 8d, or (G) b = 4a,e = 6d,c = 16d. Therefore, we get a complete classification of the Yang-Mills Hamiltonian system in sense of integrability and non-integrability.
引用
收藏
页码:1645 / 1655
页数:11
相关论文
共 50 条
  • [41] LAGRANGIAN AND HAMILTONIAN DESCRIPTIONS OF YANG-MILLS PARTICLES
    BALACHANDRAN, AP
    BORCHARDT, S
    STERN, A
    PHYSICAL REVIEW D, 1978, 17 (12): : 3247 - 3256
  • [42] Minimizers of a generalized Yang-Mills functional
    Gherghe, Catalin
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2009, 52 (03): : 307 - 309
  • [43] GENERALIZED TUNNELLINGS IN THE YANG-MILLS THEORY
    IDA, M
    OKADA, J
    PROGRESS OF THEORETICAL PHYSICS, 1982, 67 (01): : 309 - 320
  • [44] Generalized Yang-Mills theory and gravity
    Ho, Pei-Ming
    PHYSICAL REVIEW D, 2016, 93 (04)
  • [45] CONFORMAL PROPERTIES OF THE BPST INSTANTONS OF THE GENERALIZED YANG-MILLS SYSTEM
    OSE, D
    TCHRAKIAN, DH
    LETTERS IN MATHEMATICAL PHYSICS, 1987, 13 (03) : 211 - 218
  • [46] Non-integrability of the Karabut system
    Christov, Ognyan
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 32 : 91 - 97
  • [47] HAMILTONIAN ANALYSIS OF TOPOLOGICALLY MASSIVE YANG-MILLS THEORY
    EVENS, D
    KUNSTATTER, G
    PHYSICAL REVIEW D, 1988, 37 (02): : 435 - 440
  • [48] A relation between approaches to integrability in superconformal Yang-Mills theory
    Dolan, L
    Nappi, CR
    Witten, E
    JOURNAL OF HIGH ENERGY PHYSICS, 2003, (10):
  • [49] Consistent Hamiltonian interactions: the example of Yang-Mills theories
    Bizdadea, C
    Saliu, SO
    PHYSICA SCRIPTA, 2000, 62 (04): : 261 - 267
  • [50] Asymptotic symmetries of Yang-Mills fields in Hamiltonian formulation
    Roberto Tanzi
    Domenico Giulini
    Journal of High Energy Physics, 2020