A wideband CMOS distributed amplifier with slow-wave shielded transmission lines

被引:1
|
作者
Lahiji, Rosa R. [1 ,2 ]
Katehi, Linda P. B. [3 ]
Mohammadi, Saeed [4 ]
机构
[1] Case Western Reserve Univ, Dept Elect Engn & Comp Sci, Cleveland, OH 44106 USA
[2] W Wireless Hlth Inst, La Jolla, CA 92037 USA
[3] Univ Calif Davis, Davis, CA 95616 USA
[4] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
CMOS integrated circuits; distributed amplifier; shielded transmission lines; slow-wave coplanar waveguides;
D O I
10.1017/S1759078710000772
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A four-stage distributed amplifier utilizing low-loss slow-wave shielded (SWS) transmission lines is implemented in a standard 0.13 mm Complementary Metal-Oxide-Semiconductor (CMOS) technology. The amplifier when biased in its high current operating mode of I-Dtotal = 46 mA (at V-dd = 2.2 V, P-diss = 101 mW) provides a forward transmission gain of 11.3 +/- 1.5 dB with a 3-dB bandwidth of 17 GHz and a gain-bandwidth product of 74 GHz. The noise figure (NF) under the same bias condition is better than 8.5 dB up to 10 GHz. The measured output-referred 1-dB compression point is higher than +2 dBm. The amplifier is also measured under low-bias condition of I-Dtotal 18 mA (at V-dd = 1.15 V, P-diss = 20.7 mW). It provides a transmission gain of 6.6 +/- 1 dB, a 3-dB bandwidth of 14.8 GHz, a gain-bandwidth product of 35.5 GHz, and a NF of better than 8.6 dB up to 10 GHz. Despite using a simple four-stage cascode design, this distributed amplifier achieves very high-gain-bandwidth product at a relatively low DC power compared to the state of the art CMOS distributed amplifiers reported in the literature. This is due to the incorporation of low-loss SWS coplanar waveguide (CPW) transmission lines with a loss factor of nearly 50% of that of standard transmission lines on CMOS-grade Si substrate.
引用
收藏
页码:59 / 66
页数:8
相关论文
共 50 条
  • [21] THEORY OF A SLOW-WAVE CYCLOTRON AMPLIFIER
    CHU, KR
    GANGULY, AK
    GRANATSTEIN, VL
    HIRSHFIELD, JL
    PARK, SY
    BAIRD, JM
    INTERNATIONAL JOURNAL OF ELECTRONICS, 1981, 51 (04) : 493 - 502
  • [22] DESIGN OF A SLOW-WAVE CYCLOTRON AMPLIFIER
    BAIRD, JM
    PARK, SY
    CHU, KR
    KEREN, H
    HIRSHFIELD, JL
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (08): : 911 - 911
  • [23] Slow-Wave Distributed MEMS Phase Shifter in CMOS for Millimeter-Wave Applications
    Verona, B. M.
    Rehder, G. P.
    Serrano, A. L. C.
    Carreno, M. N. P.
    Ferrari, P.
    2014 44TH EUROPEAN MICROWAVE CONFERENCE (EUMC), 2014, : 211 - 214
  • [24] Modeling and Applications of Millimeter-wave Slow-wave Coplanar Coupled Lines in CMOS
    Parveg, D.
    Vahdati, A.
    Varonen, M.
    Karaca, D.
    Karkkainen, M.
    Halonen, K. A. I.
    2015 10TH EUROPEAN MICROWAVE INTEGRATED CIRCUITS CONFERENCE (EUMIC), 2015, : 207 - 210
  • [25] Compact CMOS branch-line coupler using high-Q slow-wave transmission lines
    Wang, Sen
    Huang, Bo-Zong
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2013, 55 (05) : 1174 - 1178
  • [26] Two CMOS Wilkinson Power Dividers Using High Slow-Wave and Low-Loss Transmission Lines
    Pakasiri, Chatrpol
    Teng, Wei-Sen
    Wang, Sen
    MICROMACHINES, 2024, 15 (08)
  • [27] DESIGN GUIDELINES FOR LOW-LOSS SLOW-WAVE COPLANAR TRANSMISSION LINES IN RF-CMOS TECHNOLOGY
    Kaddour, D.
    Issa, H.
    Abdelaziz, M.
    Podevin, F.
    Pistono, E.
    Ducharnp, J. -M.
    Ferrari, P.
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2008, 50 (12) : 3029 - 3036
  • [28] Average Power Handling Capability of Corrugated Slow-Wave Transmission Lines
    Zheng, Zehao
    Tang, Min
    Zhang, Haochi
    Mao, Junfa
    MICROMACHINES, 2022, 13 (06)
  • [29] CHARACTERISTICS OF MULTICONDUCTOR, ASYMMETRIC, SLOW-WAVE MICROSTRIP TRANSMISSION-LINES
    MU, TC
    OGAWA, H
    ITOH, T
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1986, 34 (12) : 1471 - 1477
  • [30] Tunable Compact Low-Noise Amplifier With Permalloy Thin-Film Enabled Slow-Wave Transmission Lines
    Xia, Tian
    Candra, Panglijen
    Wang, Guoan
    IEEE TRANSACTIONS ON MAGNETICS, 2015, 51 (11)