Automatic Bird Identification for Offshore Wind Farms: A Case Study for Deep Learning

被引:0
|
作者
Niemi, Juha [1 ]
Tanttu, Juha T. [1 ]
机构
[1] Tampere Univ Technol, Signal Proc Lab, POB 300, Pori 28101, Finland
关键词
Classification; Deep Learning; Convolutional Neural Networks; Machine Learning; Data Expansion; Wind Farms;
D O I
暂无
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
An automatic bird identification system is required for offshore wind farms in Finland. Indubitably, a radar is the obvious choice to detect birds but actual identification requires external information such as digital images. The final bird species identification is based on a fusion of radar data and image data. We applied deep learning method for image classification and we developed a data expansion technique for the training data. We present classification results for the image classifier based on small convolutional neural network.
引用
收藏
页码:263 / 266
页数:4
相关论文
共 50 条
  • [21] A methodological framework for optimal siting of offshore wind farms: A case study on the island of Crete
    Gkeka-Serpetsidaki, Pandora
    Tsoutsos, Theocharis
    ENERGY, 2022, 239
  • [22] Visual cost of energy facilities: A comprehensive model and case study of offshore wind farms
    Otero, Cesar
    Lopez, Joaquin
    Diaz, Andres
    Manchado, Cristina
    Gomez-Jauregui, Valentin
    Iglesias, Andres
    Galvez, Akemi
    LANDSCAPE AND URBAN PLANNING, 2022, 220
  • [23] Multi-criteria selection of offshore wind farms: Case study for the Baltic States
    Chaouachi, Aymen
    Covrig, Catalin Felix
    Ardelean, Mircea
    ENERGY POLICY, 2017, 103 : 179 - 192
  • [24] Automatic learning for the system identification. A case study in the prediction of power generation in a wind farm
    Aguilar, R. M.
    Torres, J. M.
    Martin, C. A.
    REVISTA IBEROAMERICANA DE AUTOMATICA E INFORMATICA INDUSTRIAL, 2019, 16 (01): : 114 - 127
  • [25] Integrated analysis of hybrid control for offshore wind turbines: A case study in wave resonance prone wind farms
    Chen, Zhengguang
    Wang, Lilin
    Wang, Lizhong
    Hong, Yi
    Zhang, Baofeng
    Yang, Qinmin
    OCEAN ENGINEERING, 2024, 298
  • [26] Data driven learning model predictive control of offshore wind farms
    Yin, Xiuxing
    Zhao, Xiaowei
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2021, 127
  • [27] Collection System Topology for Deep-Sea Offshore Wind Farms Considering Wind Characteristics
    Fu, Yang
    Liu, Yang
    Huang, Ling-ling
    Ying, Feixiang
    Li, Fangxing
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2022, 37 (01) : 631 - 642
  • [28] Machine Learning Solutions for Offshore Wind Farms: A Review of Applications and Impacts
    Masoumi, Masoud
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (10)
  • [29] Using Wind Tunnels to Predict Bird Mortality in Wind Farms: The Case of Griffon Vultures
    de Lucas, Manuela
    Ferrer, Miguel
    Janss, Guyonne F. E.
    PLOS ONE, 2012, 7 (11):
  • [30] Estimating the indirect impact of wind farms on breeding bird assemblages: a case study in the central Apennines
    Battisti, Corrado
    Franco, Daniel
    Norscia, Claudio
    Santone, Pasquale
    Soccini, Christiana
    Ferri, Vincenzo
    ISRAEL JOURNAL OF ECOLOGY & EVOLUTION, 2013, 59 (03) : 125 - 129