Automatic Bird Identification for Offshore Wind Farms: A Case Study for Deep Learning

被引:0
|
作者
Niemi, Juha [1 ]
Tanttu, Juha T. [1 ]
机构
[1] Tampere Univ Technol, Signal Proc Lab, POB 300, Pori 28101, Finland
关键词
Classification; Deep Learning; Convolutional Neural Networks; Machine Learning; Data Expansion; Wind Farms;
D O I
暂无
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
An automatic bird identification system is required for offshore wind farms in Finland. Indubitably, a radar is the obvious choice to detect birds but actual identification requires external information such as digital images. The final bird species identification is based on a fusion of radar data and image data. We applied deep learning method for image classification and we developed a data expansion technique for the training data. We present classification results for the image classifier based on small convolutional neural network.
引用
收藏
页码:263 / 266
页数:4
相关论文
共 50 条
  • [1] Deep learning-based automatic bird identification system for offshore wind farms
    Niemi, Juha
    Tanttu, Juha T.
    WIND ENERGY, 2020, 23 (06) : 1394 - 1407
  • [2] Deep Learning Case Study for Automatic Bird Identification
    Niemi, Juha
    Tanttu, Juha T.
    APPLIED SCIENCES-BASEL, 2018, 8 (11):
  • [3] Study on mining wind information for identifying potential offshore wind farms using deep learning
    Zhang, Jiahui
    Zhang, Tao
    Li, Yixuan
    Bai, Xiang
    Chang, Longwen
    FRONTIERS IN ENERGY RESEARCH, 2024, 12
  • [4] Deep Reinforcement Learning for Automatic Generation Control of Wind Farms
    Vijayshankar, Sanjana
    Stanfel, Paul
    King, Jennifer
    Spyrou, Evangelia
    Johnson, Kathryn
    2021 AMERICAN CONTROL CONFERENCE (ACC), 2021, : 1796 - 1802
  • [5] Fault detection and identification for control systems in floating offshore wind farms: A supervised Deep Learning methodology
    Fernandez-Navamuel, Ana
    Pena-Sanchez, Yerai
    Nava, Vincenzo
    OCEAN ENGINEERING, 2024, 310
  • [6] A deep reinforcement learning ensemble for maintenance scheduling in offshore wind farms
    Lee, Namkyoung
    Woo, Joohyun
    Kim, Sungryul
    APPLIED ENERGY, 2025, 377
  • [7] Assessing vulnerability of marine bird populations to offshore wind farms
    Furness, Robert W.
    Wade, Helen M.
    Masden, Elizabeth A.
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2013, 119 : 56 - 66
  • [8] PakhiChini: Automatic Bird Species Identification Using Deep Learning
    Ragib, Kazi Md
    Shithi, Raisa Taraman
    Haq, Shihab Ali
    Hasan, Md
    Sakib, Kazi Mohammed
    Farah, Tanjila
    PROCEEDINGS OF THE 2020 FOURTH WORLD CONFERENCE ON SMART TRENDS IN SYSTEMS, SECURITY AND SUSTAINABILITY (WORLDS4 2020), 2020, : 1 - 6
  • [9] Economic Analysis of Offshore Wind Farms: a Brazilian Case Study
    Livi, B. C. B.
    Wilczek, R. R.
    Batista, F. R. S.
    Macaira, P. M.
    IEEE LATIN AMERICA TRANSACTIONS, 2022, 20 (01) : 32 - 40
  • [10] Effects of established offshore wind farms on energy flow of coastal ecosystems: A case study of the Rudong offshore wind farms in China
    Wang, Junjie
    Zou, Xinqing
    Yu, Wenwen
    Zhang, Dongju
    Wang, Teng
    OCEAN & COASTAL MANAGEMENT, 2019, 171 : 111 - 118