Prognosis of dementia employing machine learning and microsimulation techniques: a systematic literature review

被引:7
|
作者
Dallora, Ana Luiza [1 ]
Eivazzadeh, Shahryar [1 ]
Mendes, Emilia [1 ]
Berglund, Johan [1 ]
Anderberg, Peter [1 ]
机构
[1] Blekinge Inst Technol, S-37179 Karlskrona, Sweden
关键词
dementia; prognosis; machine learning; microsimulation; ALZHEIMERS; GUIDELINES;
D O I
10.1016/j.procs.2016.09.185
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
OBJECTIVE: The objective of this paper is to investigate the goals and variables employed in the machine learning and microsimulation studies for the prognosis of dementia. METHOD: According to preset protocols, the Pubmed, Socups and Web of Science databases were searched to find studies that matched the defined inclusion/exclusion criteria, and then its references were checked for new studies. A quality checklist assessed the selected studies, and removed the low quality ones. The remaining ones (included set) had their data extracted and summarized. RESULTS: The summary of the data of the 37 included studies showed that the most common goal of the selected studies was the prediction of the conversion from mild cognitive impairment to Alzheimer's Disease, for studies that used machine learning, and cost estimation for the microsimulation ones. About the variables, neuroimaging was the most frequent used. CONCLUSIONS: The systematic literature review showed clear trends in prognosis of dementia research in what concerns machine learning techniques and microsimulation. (C) 2016 The Authors. Published by Elsevier B.V.
引用
收藏
页码:480 / 488
页数:9
相关论文
共 50 条
  • [41] Systematic reviews of machine learning in healthcare: a literature review
    Kolasa, Katarzyna
    Admassu, Bisrat
    Holownia-Voloskova, Malwina
    Kedzior, Katarzyna J.
    Poirrier, Jean-Etienne
    Perni, Stefano
    EXPERT REVIEW OF PHARMACOECONOMICS & OUTCOMES RESEARCH, 2024, 24 (01) : 63 - 115
  • [42] Machine Learning Applications in Baseball: A Systematic Literature Review
    Koseler, Kaan
    Stephan, Matthew
    APPLIED ARTIFICIAL INTELLIGENCE, 2017, 31 (9-10) : 745 - 763
  • [43] Cyberbullying detection and machine learning: a systematic literature review
    Balakrisnan, Vimala
    Kaity, Mohammed
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (SUPPL 1) : 1375 - 1416
  • [44] Convergence of Gamification and Machine Learning: A Systematic Literature Review
    Khakpour, Alireza
    Colomo-Palacios, Ricardo
    TECHNOLOGY KNOWLEDGE AND LEARNING, 2021, 26 (03) : 597 - 636
  • [45] A systematic literature review of machine learning applications in IoT
    Gherbi, Chirihane
    Senouci, Oussama
    Harbi, Yasmine
    Medani, Khedidja
    Aliouat, Zibouda
    INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, 2023, 36 (11)
  • [46] Convergence of Gamification and Machine Learning: A Systematic Literature Review
    Alireza Khakpour
    Ricardo Colomo-Palacios
    Technology, Knowledge and Learning, 2021, 26 : 597 - 636
  • [47] Applications of machine learning to BIM: A systematic literature review
    Zabin, Asem
    Gonzalez, Vicente A.
    Zou, Yang
    Amor, Robert
    ADVANCED ENGINEERING INFORMATICS, 2022, 51
  • [48] A Systematic Literature Review on Machine Learning in Shared Mobility
    Teusch, Julian
    Gremmel, Jan Niklas
    Koetsier, Christian
    Johora, Fatema Tuj
    Sester, Monika
    Woisetschlaeger, David M.
    Mueller, Jorg P.
    IEEE OPEN JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 4 : 870 - 899
  • [49] Data cleaning and machine learning: a systematic literature review
    Cote, Pierre-Olivier
    Nikanjam, Amin
    Ahmed, Nafisa
    Humeniuk, Dmytro
    Khomh, Foutse
    AUTOMATED SOFTWARE ENGINEERING, 2024, 31 (02)
  • [50] Adversarial Machine Learning in Industry: A Systematic Literature Review
    Jedrzejewski, Felix Viktor
    Thode, Lukas
    Fischbach, Jannik
    Gorschek, Tony
    Mendez, Daniel
    Lavesson, Niklas
    COMPUTERS & SECURITY, 2024, 145