Experimental study of dry reforming of biogas in a tubular anode-supported solid oxide fuel cell

被引:37
|
作者
Guerra, Cosimo [1 ]
Lanzini, Andrea [1 ]
Leone, Pierluigi [1 ]
Santarelli, Massimo [1 ]
Beretta, Davide [2 ]
机构
[1] Politecn Torino, Dept Energy, I-10129 Turin, Italy
[2] Ctr Ric & Sviluppo Edison Spa, I-10028 Turin, Italy
关键词
Experimental; Tubular SOFC; Ni/YSZ; Direct reforming; Biogas; Carbon dioxide; SOFC; METHANE; MIXTURES;
D O I
10.1016/j.ijhydene.2013.06.074
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The performance of a tubular Ni/YSZ anode supported SOFC directly fed by an anaerobic digestion simulated biogas, with an extra addition of carbon dioxide to operate in conservative operating conditions to avoid coking on the anode support, was investigated. The fuel cell has been tested at a fixed oven temperature of 800 degrees C and under biogas/CO2 mixtures with different volumetric ratios, fuel utilization (FU) and current densities. Polarization curves and performance maps were obtained to better understand the influence of the investigated operational parameters on the cell behavior. Furthermore, since the tubular geometry enables an easy separation of the anode and cathode exhaust gases, the anode off-gas has been collected and monitored through a gas-chromatograph under open circuit voltage to investigate on the catalytic behavior of a Ni-based state-of-the-art anode. For corresponding operative conditions, performances of the cell for biogas/CO2 1/1.5 (i.e. CH4/CO2 30/70) and 1/2 (i.e. CH4/CO2 24/76) were at least 2% and 4% lower than the case 1/1 (i.e. CH4/CO2 20/80), respectively. The highest efficiency of 43.4% was reached at 17.5 A and FU = 70%. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:10559 / 10566
页数:8
相关论文
共 50 条
  • [21] An anode-supported micro-tubular solid oxide fuel cell with redox stable composite cathode
    Zhang, Xiaozhen
    Lin, Bin
    Ling, Yihan
    Dong, Yingchao
    Meng, Guangyao
    Liu, Xingqin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (16) : 8654 - 8662
  • [22] Joining of Metallic Cap and Anode-Supported Tubular Solid Oxide Fuel Cell by Induction Brazing Process
    Kim, Jong-Hee
    Song, Rak-Hyun
    Shin, Dong-Ryul
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2009, 6 (03): : 0310121 - 0310126
  • [23] Evaluation and modeling of performance of anode-supported solid oxide fuel cell
    Yakabe, H
    Hishinuma, M
    Uratani, M
    Matsuzaki, Y
    Yasuda, I
    JOURNAL OF POWER SOURCES, 2000, 86 (1-2) : 423 - 431
  • [24] Fabrication and characteristics of anode-supported tube for solid oxide fuel cell
    Song, RH
    Kim, EY
    Shin, DR
    Yokokawa, H
    SOLID OXIDE FUEL CELLS (SOFC VI), 1999, 99 (19): : 845 - 850
  • [25] Performance Evaluation of an Anode-supported Honeycomb Solid Oxide Fuel Cell
    Fukushima, Akira
    Nakajima, Hironori
    Kitahara, Tatsumi
    STUDENT POSTERS (GENERAL) - 222ND ECS MEETING/PRIME 2012, 2013, 50 (48): : 71 - 75
  • [26] Reduction of Electrode Polarization in Anode-Supported Solid Oxide Fuel Cell
    Meepho, Malinee
    Wattanasiriwech, Darunee
    Aungkavattana, Pavadee
    Wattanasiriwech, Suthee
    2015 INTERNATIONAL CONFERENCE ON ALTERNATIVE ENERGY IN DEVELOPING COUNTRIES AND EMERGING ECONOMIES, 2015, 79 : 272 - 277
  • [27] Durable direct ethanol anode-supported solid oxide fuel cell
    Steil, M. C.
    Nobrega, S. D.
    Georges, S.
    Gelin, P.
    Uhlenbruck, S.
    Fonseca, F. C.
    APPLIED ENERGY, 2017, 199 : 180 - 186
  • [28] Microscale Modeling of an Anode-Supported Planar Solid Oxide Fuel Cell
    Chinda, P.
    Wechsatol, W.
    Chanchaona, S.
    Brault, P.
    FUEL CELLS, 2011, 11 (02) : 184 - 199
  • [29] Research progress of anode-supported micro-tubular solid oxide fuel cells
    Sun, K. (keningsun@yahoo.com.cn), 1600, Materials China (64):
  • [30] Mechanical Properties of Anode-Supported Micro-Tubular Solid Oxide Fuel Cells
    Mohammadi, A.
    Pusz, J.
    Smirnova, A. L.
    Sammes, N. M.
    SOLID OXIDE FUEL CELLS 10 (SOFC-X), PTS 1 AND 2, 2007, 7 (01): : 1409 - 1418