Congruences generated by ideals of the compatibility center of lattice effect algebras

被引:2
|
作者
Jenca, Gejza [1 ]
机构
[1] Slovak Tech Univ, Dept Math & Descript Geometry, Fac Civil Engn, Bratislava 81368, Slovakia
关键词
Effect algebra; Lattice effect algebra; Compatibility center; PARTIAL ABELIAN MONOIDS;
D O I
10.1007/s00500-012-0901-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We prove that for every lattice effect algebra, the system of all congruences generated by the prime ideals of the compatibility center separates the elements. This is a common generalization of Chang's representation theorem from 1959 and a result of Graves and Selesnick (Colloq Math 27:21-30, 1973).
引用
收藏
页码:45 / 47
页数:3
相关论文
共 50 条
  • [31] IDEALS IN THE CENTER OF SYMMETRIC ALGEBRAS
    Brenner, Sofia
    Kuelshammer, Burkhard
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2023, 34 : 126 - 151
  • [32] Ideals in the center of symmetric algebras
    Brenner, Sofia
    Külshammer, Burkhard
    arXiv, 2022,
  • [33] Lattice of processes in graphs and congruences on ideals in distributive lattices
    Shakhbazyan, K.V.
    Lebedinskaya, N.B.
    Tushkina, T.A.
    Kibernetika i Vychislitel'naya Tekhnika, 1992, (01): : 162 - 165
  • [34] FINITELY GENERATED IDEALS IN BANACH ALGEBRAS
    GLEASON, AM
    JOURNAL OF MATHEMATICS AND MECHANICS, 1964, 13 (01): : 125 - &
  • [35] REES CONGRUENCES IN LATTICE-ORDERED ALGEBRAS
    BORDALO, G
    PRIESTLEY, HA
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1994, 45 (3-4): : 355 - 364
  • [36] Vague Congruences and Quotient Lattice Implication Algebras
    Qin, Xiaoyan
    Liu, Yi
    Xu, Yang
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [37] Congruences and ideals on Peirce algebras: a heterogeneous/homogeneous point of view
    Pinto, Sandra Marques
    Teresa Oliveira-Martins, M.
    MATHEMATICAL LOGIC QUARTERLY, 2012, 58 (4-5) : 252 - 262
  • [38] Embedding *-algebras into C*-algebras and C*-ideals generated by words
    Tapper, P
    JOURNAL OF OPERATOR THEORY, 1999, 41 (02) : 351 - 364
  • [40] PRINCIPAL CONGRUENCES ON SOME LATTICE-ORDERED ALGEBRAS
    BLYTH, T
    VARLET, J
    DISCRETE MATHEMATICS, 1990, 81 (03) : 323 - 329