A 42nJ/conversion On-Demand State-of-Charge Indicator for Miniature IoT Li-ion Batteries

被引:0
|
作者
Jeong, Junwon [1 ,2 ]
Jeong, Seokhyeon [2 ]
Kim, Chulwoo [1 ]
Sylvester, Dennis [2 ]
Blaauw, David [2 ]
机构
[1] Korea Univ, Seoul, South Korea
[2] Univ Michigan, Ann Arbor, MI 48109 USA
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
An energy efficient State-of-Charge (SOC) indication algorithm and integrated system for small IoT batteries are introduced in this paper. The system is implemented in a 180-nm CMOS technology. Based on a key finding that small Li-ion batteries exhibit a linear dependence between battery voltage and load current, we propose an instantaneous linear extrapolation (ILE) algorithm and circuit allowing on-demand estimation of SOC. Power consumption is 42nW and maximum SOC indication error is 1.7%.
引用
收藏
页码:281 / 282
页数:2
相关论文
共 50 条
  • [21] A Novel Data-Driven Estimation Method for State-of-Charge Estimation of Li-Ion Batteries
    Zhai, Suwei
    Li, Wenyun
    Wang, Cheng
    Chu, Yundi
    ENERGIES, 2022, 15 (09)
  • [22] Analysis of State-of-Charge Estimation Methods for Li-Ion Batteries Considering Wide Temperature Range
    Miao, Yu
    Gao, Yang
    Liu, Xinyue
    Liang, Yuan
    Liu, Lin
    ENERGIES, 2025, 18 (05)
  • [23] A STRATEGY FOR ESTIMATING STATE-OF-CHARGE AND STATE-OF-HEALTH OF LI-ION BATTERIES IN ELECTRIC AND HYBRID ELECTRIC VEHICLES
    Zhao, Xiaowei
    Zhang, Guoyu
    Yang, Lin
    INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION - 2012, VOL 6, PTS A AND B, 2013, : 453 - 460
  • [24] Temperature Adaptive Transfer Network for Cross-Domain State-of-Charge Estimation of Li-Ion Batteries
    Shen, Liyuan
    Li, Jingjing
    Liu, Jieyan
    Zhu, Lei
    Shen, Heng Tao
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2023, 38 (03) : 3857 - 3869
  • [25] Chemo-mechanical instabilities in lithium cobalt oxide at higher state-of-charge in Li-Ion batteries
    Bal, Batuhan
    Ozdogru, Bertan
    Wable, Minal
    Murugesan, Vijayakumar
    Veith, Gabriel M.
    Capraz, Omer Ozgur
    ELECTROCHIMICA ACTA, 2024, 508
  • [26] State-of-charge estimation of Li-ion batteries using deep neural networks: A machine learning approach
    Chemali, Ephrem
    Kollmeyer, Phillip J.
    Preindl, Matthias
    Emadi, Ali
    JOURNAL OF POWER SOURCES, 2018, 400 : 242 - 255
  • [27] Long Short-Term Memory Networks for Accurate State-of-Charge Estimation of Li-ion Batteries
    Chemali, Ephrem
    Kollmeyer, Phillip J.
    Preindl, Matthias
    Ahmed, Ryan
    Emadi, Ali
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2018, 65 (08) : 6730 - 6739
  • [28] State-of-charge estimation for Li-ion batteries with uncertain parameters and uncorrelated/correlated noises: a recursive approach
    Wang, Junwei
    Shen, Bo
    Wang, Zidong
    Alsaadi, Fuad E.
    Alharbi, Khalid H.
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2021, 52 (08) : 1675 - 1691
  • [29] Parameter Identification and State-of-Charge Estimation for Li-Ion Batteries Using an Improved Tree Seed Algorithm
    Chen, Weijie
    Cai, Ming
    Tan, Xiaojun
    Wei, Bo
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2019, E102D (08): : 1489 - 1497
  • [30] Unsupervised temperature adaptive method for cross-domain state-of-charge estimation of Li-ion batteries
    Wu, Yuge
    Huang, Wei
    Zhao, Yixin
    JOURNAL OF ENERGY STORAGE, 2025, 117