Eigenvalue Isogeometric Approximations Based on B-Splines: Tools and Results

被引:1
|
作者
Ekstrom, Sven-Erik [1 ]
Serra-Capizzano, Stefano [1 ,2 ]
机构
[1] Uppsala Univ, Dept Informat Technol, Uppsala, Sweden
[2] Univ Insubria, Dept Humanities & Innovat, Varese, Italy
来源
ADVANCED METHODS FOR GEOMETRIC MODELING AND NUMERICAL SIMULATION | 2019年 / 35卷
关键词
MATRICES; SPECTRUM;
D O I
10.1007/978-3-030-27331-6_4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this note, we focus on the spectral analysis of large matrices coming from isogeometric approximations based on B-splines of the eigenvalue problem -(a(x)u'(x))' = lambda b(x)u(x), x is an element of(0,1), where u(0) and u(1) are given. When considering the collocation case, global distribution results for the eigenvalues are available in the literature, despite the nonsymmetry of the related matrices. Here we complement such results by providing precise estimates for the extremal eigenvalues and hence for the spectral conditioning of the resulting matrices. In the Galerkin setting, the matrices are symmetric and positive definite and a more complete analysis has been conducted in the literature. In the latter case we furnish a further procedure that gives a highly accurate estimate of all the eigenvalues, starting from the knowledge of the spectral distribution symbol. The techniques involve dyadic decomposition arguments, tools from the theory of generalized locally Toeplitz sequences, and basic extrapolation methods.
引用
收藏
页码:57 / 76
页数:20
相关论文
共 50 条
  • [31] A space-preserving data structure for isogeometric topology optimization in B-splines space
    Aodi Yang
    Shuting Wang
    Nianmeng Luo
    Tifan Xiong
    Xianda Xie
    Structural and Multidisciplinary Optimization, 2022, 65
  • [32] A space-preserving data structure for isogeometric topology optimization in B-splines space
    Yang, Aodi
    Wang, Shuting
    Luo, Nianmeng
    Xiong, Tifan
    Xie, Xianda
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2022, 65 (10)
  • [33] Complex B-splines
    Forster, B
    Blu, T
    Unser, M
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2006, 20 (02) : 261 - 282
  • [34] ISOGEOMETRIC DIVERGENCE-CONFORMING B-SPLINES FOR THE STEADY NAVIER-STOKES EQUATIONS
    Evans, John A.
    Hughes, Thomas J. R.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2013, 23 (08): : 1421 - 1478
  • [35] ISOGEOMETRIC DIVERGENCE-CONFORMING B-SPLINES FOR THE DARCY-STOKES-BRINKMAN EQUATIONS
    Evans, John A.
    Hughes, Thomas J. R.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2013, 23 (04): : 671 - 741
  • [36] Quantum B-splines
    Plamen Simeonov
    Ron Goldman
    BIT Numerical Mathematics, 2013, 53 : 193 - 223
  • [37] Quantum B-splines
    Simeonov, Plamen
    Goldman, Ron
    BIT NUMERICAL MATHEMATICS, 2013, 53 (01) : 193 - 223
  • [38] THEOREM ON B-SPLINES
    DOMSTA, J
    STUDIA MATHEMATICA, 1972, 41 (03) : 291 - &
  • [39] LR B-Splines implementation in the Altair Radioss™ solver for explicit dynamics IsoGeometric Analysis
    Occelli, M.
    Elguedj, T.
    Bouabdallahh, S.
    Morancay, L.
    ADVANCES IN ENGINEERING SOFTWARE, 2019, 131 : 166 - 185
  • [40] ON MULTIVARIATE B-SPLINES
    DAHMEN, W
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1980, 17 (02) : 179 - 191