Inferences in semi-parametric dynamic mixed models for longitudinal count data

被引:3
|
作者
Zheng, Nan [1 ]
Sutradhar, Brajendra C. [1 ]
机构
[1] Mem Univ, Dept Math & Stat, St John, NF A1C 5S7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Consistency; Dynamic relationship for repeated counts; Generalized quasi-likelihood; Longitudinal correlations; Overdispersion of main interest; Parametric and non-parametric functions; Random effects and their variance; Regression effects of main interest; Semi-parametric model and estimation; GENERALIZED LINEAR-MODELS; PANEL-DATA MODELS; ESTIMATING EQUATIONS; CORRELATED ERRORS; REGRESSION-MODELS; BIAS CORRECTION; DISPERSION; EFFICIENCY; RESPONSES; DISCRETE;
D O I
10.1007/s10463-016-0590-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers a semi-parametric mixed model for longitudinal counts under the assumption that for conditional on a common random effect over time the repeated count responses of an individual follow a Poisson AR(1) (auto-regressive order 1) non-stationary correlation structure. A step-by-step estimation approach is developed which provides consistent estimators for the non-parametric function, regression parameters, variance of the random effects, and auto-correlation structure of the model. Proofs for the consistency properties of the estimators along with their convergence rates are derived. A simulation study is conducted to examine first the estimation effects on parameters when the non-parametric function is ignored, and then an overall estimation study is carried out in the presence of the non-parametric function by including its estimation as well.
引用
收藏
页码:215 / 247
页数:33
相关论文
共 50 条
  • [41] Semi-parametric estimation for ARCH models
    Alzghool, Raed
    Al-Zubi, Loai M.
    ALEXANDRIA ENGINEERING JOURNAL, 2018, 57 (01) : 367 - 373
  • [42] Semi-Parametric Dynamic Contextual Pricing
    Shah, Virag
    Blanchet, Jose
    Johari, Ramesh
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [43] Semi-parametric adjustment to computer models
    Wang, Yan
    Tuo, Rui
    STATISTICS, 2020, 54 (06) : 1255 - 1275
  • [44] Variable selection in semi-parametric models
    Zhang, Hongmei
    Maity, Arnab
    Arshad, Hasan
    Holloway, John
    Karmaus, Wilfried
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2016, 25 (04) : 1736 - 1752
  • [45] Classification of longitudinal profiles using semi-parametric nonlinear mixed models with P-Splines and the SAEM algorithm
    Marquez, Maritza
    Meza, Cristian
    Lee, Dae-Jin
    De la Cruz, Rolando
    STATISTICS IN MEDICINE, 2023, 42 (27) : 4952 - 4971
  • [46] Observed information in semi-parametric models
    Murphy, SA
    Van der Vaart, AW
    BERNOULLI, 1999, 5 (03) : 381 - 412
  • [47] Semi-parametric Models for Visual Odometry
    Guizilini, Vitor
    Ramos, Fabio
    2012 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2012, : 3482 - 3489
  • [48] Semi-Parametric Models - An Application in Medicine
    Pereira, J. A.
    Pereira, A. L.
    Oliveira, T. A.
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019, 2020, 2293
  • [49] Validation tests for semi-parametric models
    Meintanis, Simos G.
    Einbeck, Jochen
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (01) : 131 - 146
  • [50] Hyperbolic and semi-parametric models in finance
    Bingham, NH
    Kiesel, R
    DISORDERED AND COMPLEX SYSTEMS, 2001, 553 : 275 - 280