Algorithms and applications of path-integral renormalization group method

被引:0
|
作者
Imada, M [1 ]
Mizusaki, T
机构
[1] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan
[2] Sci & Technol Agcy, PRESTO, Kawaguchi, Saitama, Japan
[3] Senshu Univ, Inst Nat Sci, Chiyoda Ku, Tokyo 1018425, Japan
关键词
strongly correlated electrons; Hubbard model; first-principles method;
D O I
暂无
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Path-integral renormalization-group (PIRG) method is a rapidly developing tool for computing ground state properties of interacting quantum systems on lattices, particularly models for strongly correlated electrons such as the Hubbard model. It has served in clarifying phase diagrams of the Hubbard model containing quantum spin liquid phase. PIRG has also been implemented as a low-energy solver of the effective Hamiltonian for realistic systems. This makes it possible to construct a scheme of first-principles calculation by the hybrid approach combined with the density functional theory.
引用
收藏
页码:78 / +
页数:3
相关论文
共 50 条
  • [31] Holographic path-integral optimization
    Boruch, Jan
    Caputa, Pawel
    Ge, Dongsheng
    Takayanagi, Tadashi
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (07)
  • [32] DISCRETIZATION OF THE SUPERPARTICLE PATH-INTEGRAL
    GRUNDBERG, J
    LINDSTROM, U
    NORDSTROM, H
    MODERN PHYSICS LETTERS A, 1993, 8 (14) : 1323 - 1329
  • [33] Holographic path-integral optimization
    Jan Boruch
    Pawel Caputa
    Dongsheng Ge
    Tadashi Takayanagi
    Journal of High Energy Physics, 2021
  • [34] HAMILTONIAN PATH-INTEGRAL METHODS
    GARROD, C
    REVIEWS OF MODERN PHYSICS, 1966, 38 (03) : 483 - &
  • [35] A RIEMANN INTEGRAL APPROACH TO FEYNMANS PATH-INTEGRAL
    MONACO, RL
    LAGOS, RE
    RODRIGUES, WA
    FOUNDATIONS OF PHYSICS LETTERS, 1995, 8 (04) : 365 - 373
  • [36] PATH-INTEGRAL METHOD OF SOLVING THE PROBLEM OF THERMAL VORTEX CREEP
    CHAU, HF
    CHENG, KS
    PHYSICAL REVIEW A, 1991, 44 (06): : 3478 - 3483
  • [37] PARTITION-FUNCTION FOR ANHARMONIC POTENTIAL BY PATH-INTEGRAL METHOD
    MAHESHWARI, A
    SHARMA, KC
    PHYSICS LETTERS A, 1973, A-46 (02) : 123 - 124
  • [39] Path-integral Monte Carlo method for Renyi entanglement entropies
    Herdman, C. M.
    Inglis, Stephen
    Roy, P. -N.
    Melko, R. G.
    Del Maestro, A.
    PHYSICAL REVIEW E, 2014, 90 (01):
  • [40] Properties of fermionic systems with the path-integral ground state method
    Ujevic, Sebastian
    Zampronio, Vinicius
    de Abreu, Bruno R.
    Vitiello, Silvio A.
    SCIPOST PHYSICS CORE, 2023, 6 (02):