Ultra short term probability prediction of wind power based on wavelet decomposition and long short-term memory network

被引:0
|
作者
Wang, Peng [1 ]
Sun, Yonghui [1 ]
Thai, Suwei [1 ]
Wu, Xiaopeng [1 ]
Zhou, Yan [1 ]
Hou, Dongchen [1 ]
机构
[1] Hohai Univ, Coll Energy & Elect Engn, Nanjing 210098, Peoples R China
基金
国家重点研发计划;
关键词
Wavelet decomposition; Long short-term memory; Wind power; Probability prediction; NEURAL-NETWORK; FORECASTS; INTERVALS; LOAD;
D O I
10.1109/ccdc.2019.8832903
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the large-scale wind integration into power grid, the intermittent and stochastic nature of wind power possess a threat to the safety of power grid, and wind power prediction has become one of the most important solutions to the current grid connection problem. However, the prediction error in point prediction of wind power cannot be ignored, so it is necessary to make probability prediction of wind power and improve reliable information to the power grid dispatch department. In this paper, by combing with the wavelet decomposition technology and the long short-term memory (LSTM) network, an ultra short-term probability model is proposed. Firstly, the original time series are smoothed by wavelet decomposition technology, then the LSTM network prediction model of each sub-series sample is developed. The Gaussian distribution function of the prediction error is obtained by using the maximum likelihood estimation method, and finally the probability interval prediction of the future wind power in four hours could be realized. Finally, by using the data collected from a wind farm in northeast china, a numerical example is presented to illustrate the usefulness of the proposed method, which show that combining wavelet decomposition with deep learning method can improve the accuracy of prediction, improve the interval reliability of probability prediction, and enhance the generalization ability of the model.
引用
收藏
页码:2061 / 2066
页数:6
相关论文
共 50 条
  • [31] Short-term photovoltaic power prediction based on coyote algorithm optimized long-short-term memory network
    Mai, Jinjin
    Zhang, Xiaohong
    PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON POWER ELECTRONICS AND ARTIFICIAL INTELLIGENCE, PEAI 2024, 2024, : 707 - 711
  • [32] Short-term natural gas consumption prediction based on wavelet transform and bidirectional long short-term memory optimized by Bayesian network
    Li, Zhaoyang
    Liu, Liang
    Qiao, Weibiao
    ENERGY SCIENCE & ENGINEERING, 2022, 10 (09) : 3281 - 3300
  • [33] Combined Long Short-Term Memory Network-Based Short-Term Prediction of Solar Irradiance
    Madhiarasan, Manoharan
    Louzazni, Mohamed
    International Journal of Photoenergy, 2022, 2022
  • [34] Combined Long Short-Term Memory Network-Based Short-Term Prediction of Solar Irradiance
    Madhiarasan, Manoharan
    Louzazni, Mohamed
    INTERNATIONAL JOURNAL OF PHOTOENERGY, 2022, 2022
  • [35] Technical indicator enhanced ultra-short-term wind power forecasting based on long short-term memory network combined XGBoost algorithm
    Zheng, Yingying
    Guan, Shijie
    Guo, Kailei
    Zhao, Yongning
    Ye, Lin
    IET RENEWABLE POWER GENERATION, 2024,
  • [36] Adaptive Convolution Long-Short Memory Network Short-Term Wind Power Prediction Based on Transitional Weather Classification
    Yan, Gaoyang
    Ding, Guili
    Kang, Bing
    Xu, Zhihao
    Wang, ZongYao
    Zhang, Xingwang
    He, Wenhua
    PROCEEDINGS OF 2023 INTERNATIONAL CONFERENCE ON WIRELESS POWER TRANSFER, VOL 4, ICWPT 2023, 2024, 1161 : 496 - 504
  • [37] Very Short-term Wind Direction Prediction Via Self-tuning Wavelet Long-short Term Memory Neural Network
    Tang Z.
    Zhao G.
    Cao S.
    Zhao B.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2019, 39 (15): : 4459 - 4467
  • [38] Intelligent forecast engine for short-term wind speed prediction based on stacked long short-term memory
    Shahid, Farah
    Zameer, Aneela
    Iqbal, Muhammad Javaid
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (20): : 13767 - 13783
  • [39] Intelligent forecast engine for short-term wind speed prediction based on stacked long short-term memory
    Farah Shahid
    Aneela Zameer
    Muhammad Javaid Iqbal
    Neural Computing and Applications, 2021, 33 : 13767 - 13783
  • [40] Short-term wind power prediction based on improved sparrow search algorithm optimized long short-term memory with peephole connections
    Tang, Fei
    WIND ENGINEERING, 2025, 49 (01) : 71 - 90