Ultra short term probability prediction of wind power based on wavelet decomposition and long short-term memory network

被引:0
|
作者
Wang, Peng [1 ]
Sun, Yonghui [1 ]
Thai, Suwei [1 ]
Wu, Xiaopeng [1 ]
Zhou, Yan [1 ]
Hou, Dongchen [1 ]
机构
[1] Hohai Univ, Coll Energy & Elect Engn, Nanjing 210098, Peoples R China
基金
国家重点研发计划;
关键词
Wavelet decomposition; Long short-term memory; Wind power; Probability prediction; NEURAL-NETWORK; FORECASTS; INTERVALS; LOAD;
D O I
10.1109/ccdc.2019.8832903
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the large-scale wind integration into power grid, the intermittent and stochastic nature of wind power possess a threat to the safety of power grid, and wind power prediction has become one of the most important solutions to the current grid connection problem. However, the prediction error in point prediction of wind power cannot be ignored, so it is necessary to make probability prediction of wind power and improve reliable information to the power grid dispatch department. In this paper, by combing with the wavelet decomposition technology and the long short-term memory (LSTM) network, an ultra short-term probability model is proposed. Firstly, the original time series are smoothed by wavelet decomposition technology, then the LSTM network prediction model of each sub-series sample is developed. The Gaussian distribution function of the prediction error is obtained by using the maximum likelihood estimation method, and finally the probability interval prediction of the future wind power in four hours could be realized. Finally, by using the data collected from a wind farm in northeast china, a numerical example is presented to illustrate the usefulness of the proposed method, which show that combining wavelet decomposition with deep learning method can improve the accuracy of prediction, improve the interval reliability of probability prediction, and enhance the generalization ability of the model.
引用
收藏
页码:2061 / 2066
页数:6
相关论文
共 50 条
  • [1] Short-term wind power probability density prediction based on long short term memory network quantile regression
    Yin H.
    Huang S.
    Meng A.
    Liu Z.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2021, 42 (02): : 150 - 156
  • [2] Short-Term Prediction of Wind Power Based on Deep Long Short-Term Memory
    Qu Xiaoyun
    Kang Xiaoning
    Zhang Chao
    Jiang Shuai
    Ma Xiuda
    2016 IEEE PES ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), 2016, : 1148 - 1152
  • [3] Short-term wind power prediction based on combined long short-term memory
    Zhao, Yuyang
    Li, Lincong
    Guo, Yingjun
    Shi, Boming
    Sun, Hexu
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2024, 18 (05) : 931 - 940
  • [4] Ultra-short-term wind power prediction model based on long and short term memory network
    Zhang Q.
    Tang Z.
    Wang G.
    Yang Y.
    Tong Y.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2021, 42 (10): : 275 - 281
  • [5] A Prediction Method for Ultra Short-Term Wind Power Prediction Basing on Long Short -Term Memory Network and Extreme Learning Machine
    Pan Guangxu
    Zhang Haijing
    Ju Wenjie
    Yang Weijin
    Qin Chenglong
    Pei Liwei
    Sun Yuan
    Wang Ruiqi
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 7608 - 7612
  • [6] A short-term wind power prediction approach based on ensemble empirical mode decomposition and improved long short-term memory
    Jiang, Tianyue
    Liu, Yutong
    COMPUTERS & ELECTRICAL ENGINEERING, 2023, 110
  • [7] Ultra-short Term Wind Speed Prediction Using Mathematical Morphology Decomposition and Long Short-term Memory
    Li, Mengshi
    Zhang, Zhiyuan
    Ji, Tianyao
    Wu, Q. H.
    CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, 2020, 6 (04): : 890 - 900
  • [8] A long short-term memory based wind power prediction method
    Huang, Yufeng
    Ding, Min
    Fang, Zhijian
    Wang, Qingyi
    Tan, Zhili
    Lil, Danyun
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 5927 - 5932
  • [9] Multiple decomposition-aided long short-term memory network for enhanced short-term wind power forecasting
    Balci, Mehmet
    Dokur, Emrah
    Yuzgec, Ugur
    Erdogan, Nuh
    IET RENEWABLE POWER GENERATION, 2024, 18 (03) : 545 - 557
  • [10] Short-term wind speed prediction model based on long short-term memory network with feature extraction
    Zhongda Tian
    Xiyan Yu
    Guokui Feng
    Earth Science Informatics, 2025, 18 (4)