DESINGULARIZATION OF COMPLEX MULTIPLE ZETA-FUNCTIONS

被引:12
|
作者
Furusho, Hidekazu [1 ]
Komori, Yasushi [2 ]
Matsumoto, Kohji [1 ]
Tsumura, Hirofumi [3 ]
机构
[1] Nagoya Univ, Grad Sch Math, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648602, Japan
[2] Rikkyo Univ, Dept Math, Toshima Ku, Tokyo 1718501, Japan
[3] Tokyo Metropolitan Univ, Dept Math & Informat Sci, 1-1 Minami Ohsawa, Hachioji, Tokyo 1920397, Japan
关键词
ANALYTIC CONTINUATION; VALUES; SERIES;
D O I
10.1353/ajm.2017.0002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the method of desingularization of multi-variable multiple zeta-functions (of the generalized Euler-Zagier type), under the motivation of finding a suitable rigorous meaning of the values of multiple zeta-functions at non-positive integer points. We reveal that multiple zeta-functions (which are known to be meromorphic in the whole space with infinitely many singular hyperplanes) turn out to be entire on the whole space after taking the desingularization. The desingularized function is given by a suitable finite "linear" combination of multiple zeta-functions with some arguments shifted. It is shown that specific combinations of Bernoulli numbers attain the special values at their non-positive integers of the desingularized ones. We also discuss twisted multiple zeta-functions, which can be continued to entire functions, and their special values at non-positive integer points can be explicitly calculated.
引用
收藏
页码:147 / 173
页数:27
相关论文
共 50 条
  • [41] ZETA-FUNCTIONS IN NIELSEN THEORY
    FELSHTYN, AL
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1988, 22 (01) : 76 - 78
  • [42] ZEROS OF RIEMANN ZETA-FUNCTIONS
    KARATSUBA, AA
    DOKLADY AKADEMII NAUK SSSR, 1984, 276 (03): : 535 - 539
  • [43] ZEROS OF HURWITZ ZETA-FUNCTIONS
    SPIRA, R
    MATHEMATICS OF COMPUTATION, 1976, 30 (136) : 863 - 866
  • [44] On the Functional Relations for the Euler-Zagier Multiple Zeta-functions
    Ikeda, Soichi
    Matsuoka, Kaneaki
    TOKYO JOURNAL OF MATHEMATICS, 2018, 41 (02) : 477 - 485
  • [45] On the product of Hurwitz zeta-functions
    Wang, Nian Liang
    Banerjee, Soumyarup
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2017, 93 (05) : 31 - 36
  • [46] PERIODS AND LEFSCHETZ ZETA-FUNCTIONS
    CASASAYAS, J
    LLIBRE, J
    NUNES, A
    PACIFIC JOURNAL OF MATHEMATICS, 1994, 165 (01) : 51 - 66
  • [47] ZETA-FUNCTIONS AND THE CASIMIR ENERGY
    BLAU, SK
    VISSER, M
    WIPF, A
    NUCLEAR PHYSICS B, 1988, 310 (01) : 163 - 180
  • [48] EVALUATION OF WEIERSTRASS ZETA-FUNCTIONS
    LING, CB
    SIAM REVIEW, 1979, 21 (01) : 146 - 147
  • [49] ZETA-FUNCTIONS OF FORMAL LANGUAGES
    BERSTEL, J
    REUTENAUER, C
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 321 (02) : 533 - 546
  • [50] Bounds for double zeta-functions
    Kiuchi, Isao
    Tanigawa, Yoshio
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2006, 5 (04) : 445 - 464