Generalized monotonically convergent algorithms for solving quantum optimal control problems

被引:121
|
作者
Ohtsuki, Y [1 ]
Turinici, G
Rabitz, H
机构
[1] Tohoku Univ, Grad Sch Sci, Dept Chem, Sendai, Miyagi 9808578, Japan
[2] INRIA Rocquencourt, MICMAC Project, F-78153 Le Chesnay, France
[3] ENPC, CERMICS, F-77455 Marne La Vallee, France
[4] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2004年 / 120卷 / 12期
关键词
D O I
10.1063/1.1650297
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A wide range of cost functionals that describe the criteria for designing optimal pulses can be reduced to two basic functionals by the introduction of product spaces. We extend previous monotonically convergent algorithms to solve the generalized pulse design equations derived from those basic functionals. The new algorithms are proved to exhibit monotonic convergence. Numerical tests are implemented in four-level model systems employing stationary and/or nonstationary targets in the absence and/or presence of relaxation. Trajectory plots that conveniently present the global nature of the convergence behavior show that slow convergence may often be attributed to "trapping" and that relaxation processes may remove such unfavorable behavior. (C) 2004 American Institute of Physics.
引用
收藏
页码:5509 / 5517
页数:9
相关论文
共 50 条
  • [41] Certification of Distributed Algorithms Solving Problems with Optimal Substructure
    Voellinger, Kim
    Reisig, Wolfgang
    SOFTWARE ENGINEERING AND FORMAL METHODS, 2015, 9276 : 190 - 195
  • [42] ALGORITHMS FOR OPTIMAL-CONTROL PROBLEMS
    GABASOV, R
    GNEVKO, SV
    DAUKSHAS, VZ
    DOKLADY AKADEMII NAUK BELARUSI, 1983, 27 (12): : 1065 - 1068
  • [43] Quantum algorithms for optimal graph traversal problems
    Doern, Sebastian
    QUANTUM INFORMATION AND COMPUTATION V, 2007, 6573
  • [44] Adaptive algorithms for solving generalized eigenvalue signal enhancement problems
    Morgan, DR
    SIGNAL PROCESSING, 2004, 84 (06) : 957 - 968
  • [45] Superlinearly convergent algorithms for solving singular equations and smooth reformulations of complementarity problems
    Izmailov, AF
    Solodov, MV
    SIAM JOURNAL ON OPTIMIZATION, 2002, 13 (02) : 386 - 405
  • [46] INTERIOR POINT METHODS IN OPTIMAL CONTROL PROBLEMS OF AFFINE SYSTEMS: CONVERGENCE RESULTS AND SOLVING ALGORITHMS
    Malisani, Paul
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2023, 61 (06) : 3390 - 3414
  • [47] Robust Monotonically Convergent Iterative Learning Control for Discrete-Time Systems via Generalized KYP Lemma
    Ding, Jian
    Yang, Huizhong
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [48] Generalized Bernoulli Polynomials: Solving Nonlinear 2D Fractional Optimal Control Problems
    Hassani, H.
    Machado, J. A. Tenreiro
    Avazzadeh, Z.
    Naraghirad, E.
    Dahaghin, M. Sh.
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 83 (02)
  • [49] Generalized Bernoulli Polynomials: Solving Nonlinear 2D Fractional Optimal Control Problems
    H. Hassani
    J. A. Tenreiro Machado
    Z. Avazzadeh
    E. Naraghirad
    M. Sh. Dahaghin
    Journal of Scientific Computing, 2020, 83
  • [50] Nonlinear Monotonically Convergent Iterative Learning Control for Batch Processes
    Lu, Jingyi
    Cao, Zhixing
    Zhang, Ridong
    Gao, Furong
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2018, 65 (07) : 5826 - 5836