Generalized monotonically convergent algorithms for solving quantum optimal control problems

被引:121
|
作者
Ohtsuki, Y [1 ]
Turinici, G
Rabitz, H
机构
[1] Tohoku Univ, Grad Sch Sci, Dept Chem, Sendai, Miyagi 9808578, Japan
[2] INRIA Rocquencourt, MICMAC Project, F-78153 Le Chesnay, France
[3] ENPC, CERMICS, F-77455 Marne La Vallee, France
[4] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2004年 / 120卷 / 12期
关键词
D O I
10.1063/1.1650297
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A wide range of cost functionals that describe the criteria for designing optimal pulses can be reduced to two basic functionals by the introduction of product spaces. We extend previous monotonically convergent algorithms to solve the generalized pulse design equations derived from those basic functionals. The new algorithms are proved to exhibit monotonic convergence. Numerical tests are implemented in four-level model systems employing stationary and/or nonstationary targets in the absence and/or presence of relaxation. Trajectory plots that conveniently present the global nature of the convergence behavior show that slow convergence may often be attributed to "trapping" and that relaxation processes may remove such unfavorable behavior. (C) 2004 American Institute of Physics.
引用
收藏
页码:5509 / 5517
页数:9
相关论文
共 50 条
  • [1] Monotonically convergent algorithms for solving quantum optimal control problems of a dynamical system nonlinearly interacting with a control
    Ohtsuki, Yukiyoshi
    Nakagami, Kazuyuki
    PHYSICAL REVIEW A, 2008, 77 (03):
  • [2] Monotonically convergent algorithms for solving quantum optimal control problems described by an integrodifferential equation of motion
    Ohtsuki, Yukiyoshi
    Teranishi, Yoshiaki
    Saalfrank, Peter
    Turinici, Gabriel
    Rabitz, Herschel
    PHYSICAL REVIEW A, 2007, 75 (03)
  • [3] Discretely monotonically convergent algorithms in quantum control
    Maday, Y
    Salomon, J
    Turinici, G
    LAGRANGIAN AND HAMILTONIAN METHODS IN NONLINEAR CONTROL 2003, 2003, : 291 - 294
  • [4] New formulations of monotonically convergent quantum control algorithms
    Maday, Y
    Turinici, G
    JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (18): : 8191 - 8196
  • [5] Monotonically convergent algorithm for quantum optimal control with dissipation
    Ohtsuki, Y
    Zhu, WS
    Rabitz, H
    JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (20): : 9825 - 9832
  • [6] Monotonically convergent algorithms for bounded quantum controls
    Turinici, G
    LAGRANGIAN AND HAMILTONIAN METHODS IN NONLINEAR CONTROL 2003, 2003, : 233 - 237
  • [7] Monotonically convergent optimal control theory of quantum systems with spectral constraints on the control field
    Lapert, M.
    Tehini, R.
    Turinici, G.
    Sugny, D.
    PHYSICAL REVIEW A, 2009, 79 (06):
  • [8] GEOMETRICALLY CONVERGENT ALGORITHM FOR SOLVING OPTIMAL CONTROL PROBLEMS
    BARNES, ER
    SIAM JOURNAL ON CONTROL, 1972, 10 (03): : 434 - &
  • [9] Monotonically convergent optimal control theory of quantum systems under a nonlinear interaction with the control field
    Lapert, M.
    Tehini, R.
    Turinici, G.
    Sugny, D.
    PHYSICAL REVIEW A, 2008, 78 (02):
  • [10] Optimal control design of NMR and dynamic nuclear polarization experiments using monotonically convergent algorithms
    Maximov, Ivan I.
    Tosner, Zdenek
    Nielsen, Niels Chr.
    JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (18):