finite element method;
high order shear deformation beam theory;
functionally graded material beam;
static analysis;
FREE-VIBRATION ANALYSIS;
SHEAR DEFORMATION-THEORY;
FINITE-ELEMENT;
GRADED BEAMS;
TIMOSHENKO;
PLATES;
MODEL;
D O I:
10.12989/sem.2019.69.4.427
中图分类号:
TU [建筑科学];
学科分类号:
0813 ;
摘要:
In this study, an alternative solution procedure presented by using variational methods for analysis of shear deformable functionally graded material (FGM) beams with mixed formulation. By using the advantages of Gateaux differential approaches, a refined complex general functional and boundary conditions which comprises seven independent variables such as displacement, rotation, bending moment and higher-order bending moment, shear force and higher-order shear force, is derived for general thick-thin FGM beams via shear deformation beam theories. The mixed-finite element method (FEM) is employed to obtain a beam element which have a 2-nodes and total fourteen degrees-of-freedoms. A computer program is written to execute the analyses for the present study. The numerical results of analyses obtained for different boundary conditions are presented and compared with results available in the literature.
机构:
State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics, Architecture and Civil Engineering, China University of Mining and TechnologyState Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics, Architecture and Civil Engineering, China University of Mining and Technology
Cheng H.
Cao Z.
论文数: 0引用数: 0
h-index: 0
机构:
School of Aerospace Engineering and Applied Mechanics, Tongji UniversityState Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics, Architecture and Civil Engineering, China University of Mining and Technology