Stress response of low temperature PECVD silicon nitride thin films to cryogenic thermal cycling

被引:0
|
作者
Martyniuk, M [1 ]
Antoszewski, J [1 ]
Musca, CA [1 ]
Dell, JM [1 ]
Faraone, L [1 ]
机构
[1] Univ Western Australia, Crawley, WA 6009, Australia
关键词
silicon nitride; thermal expansion; thin films; stress;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An investigation is presented of the stress response of low-temperature plasma-enhanced chemical vapour deposited silicon nitride thin films to thermal cycling over the temperature range of 100K-325K. The room temperature thermal expansion coefficient of SiNx films increases in a general parabolic fashion from 2.6 ppm/K to 5.2 ppm/K, as the temperature of the deposition process is lowered from 300 degrees C to 50 degrees C. It is observed that the thermal expansion coefficients of the SiNx. films and silicon substrates show similar temperature dependences over the 100K-325K operating temperature region. Importantly, it has been found that the porous nature of SiNx thin films deposited below 100 degrees C caused higher tensile thin film stress values when measured in vacuum than stress values measured at atmospheric pressure. Annealing at 50 degrees C of films deposited at and below 100 degrees C introduced further tensile stress changes, and resulted in hysterisism of the thermal cycling stress response curves. These stress changes have been shown to be fully reversible upon reexposure to atmosphere or high purity nitrogen, helium, argon, or oxygen.
引用
收藏
页码:381 / 384
页数:4
相关论文
共 50 条
  • [21] Stress Analysis and Characterization of PECVD Oxide/Nitride Multi-Layered Films After Thermal Cycling
    Chen, Kuo-Shen
    Tsai, Ying-Geng
    Yang, Tzu-Huei
    IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, 2021, 21 (01) : 17 - 25
  • [22] A study on resistance of PECVD silicon nitride thin film to thermal stress-induced cracking
    Jo, MC
    Park, SK
    Park, SJ
    APPLIED SURFACE SCIENCE, 1999, 140 (1-2) : 12 - 18
  • [23] Low temperature thermal chemical vapor deposition of silicon nitride thin films for microelectronics applications
    Skordas, Spyridon, 2000, Materials Research Society, Warrendale, PA, United States (606):
  • [24] Low temperature thermal chemical vapor deposition of silicon nitride thin films for microelectronics applications
    Skordas, S
    Sirinakis, G
    Yu, W
    Wu, D
    Efstathiadis, H
    Kaloyeros, AE
    CHEMICAL PROCESSING OF DIELECTRICS, INSULATORS AND ELECTRONIC CERAMICS, 2000, 606 : 109 - 114
  • [25] PECVD grown silicon nitride ultra-thin films for CNTFETs
    Gangavarapu, P. R. Yasasvi
    Sharma, Anjanashree Mankala Ramakrishna
    Naik, A. K.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2019, 34 (06)
  • [26] Optical and structural characterization of silicon nitride thin films deposited by PECVD
    Guler, I
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2019, 246 : 21 - 26
  • [27] Low temperature silicon nitride for surface passivation by PECVD technique
    Jana, T
    Ray, S
    PROCEEDING OF THE TENTH INTERNATIONAL WORKSHOP ON THE PHYSICS OF SEMICONDUCTOR DEVICES, VOLS I AND II, 2000, 3975 : 845 - 848
  • [28] Effect of deposition conditions on mechanical properties of low-temperature PECVD silicon nitride films
    Huang, H.
    Winchester, K. J.
    Suvorova, A.
    Lawn, B. R.
    Liu, Y.
    Hu, X. Z.
    Dell, J. M.
    Faraone, L.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2006, 435 : 453 - 459
  • [29] Low-temperature PECVD deposition of highly conductive microcrystalline silicon thin films
    Nardes, AM
    De Andrade, AM
    Fonseca, FJ
    Dirani, EAT
    Dirani, EAT
    Muccillo, R
    Muccillo, ENS
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2003, 14 (5-7) : 407 - 411
  • [30] Low-temperature PECVD deposition of highly conductive microcrystalline silicon thin films
    A. M. Nardes
    A. M. de Andrade
    F. J. Fonseca
    E. A. T. Dirani
    R. Muccillo
    E. N. S. Muccillo
    Journal of Materials Science: Materials in Electronics, 2003, 14 : 407 - 411