In-depth comparison of somatic point mutation callers based on different tumor next-generation sequencing depth data

被引:77
|
作者
Cai, Lei [1 ,2 ]
Yuan, Wei [1 ]
Zhang, Zhou [1 ,3 ]
He, Lin [1 ,4 ]
Chou, Kuo-Chen [2 ,5 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai Key Lab Psychot Disorders 13dz2260500, Key Lab Genet Dev & Neuropsychiat Disorders, Bio X Inst,Minist Educ, Shanghai 200030, Peoples R China
[2] Gordon Life Sci Inst, Boston, MA 02478 USA
[3] Shanghai Jiao Tong Univ, Sch Med, Inst Biliary Tract Dis, Xinhua Hosp, Shanghai 200092, Peoples R China
[4] Zhejiang Univ, Sch Med, Womens Hosp, Hangzhou 310006, Zhejiang, Peoples R China
[5] King Abdulaziz Univ, CEGMR, Jeddah 21589, Saudi Arabia
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
关键词
CANCER GENOMES; SNV DETECTION; WHOLE-EXOME; WEB SERVER; IDENTIFICATION; VARIANTS; MODES; DISCOVERY; PACKAGE; PSEKNC;
D O I
10.1038/srep36540
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Four popular somatic single nucleotide variant (SNV) calling methods (Varscan, SomaticSniper, Strelka and MuTect2) were carefully evaluated on the real whole exome sequencing (WES, depth of -50X) and ultra-deep targeted sequencing (UDT-Seq, depth of similar to 370X) data. The four tools returned poor consensus on candidates (only 20% of calls were with multiple hits by the callers). For both WES and UDT-Seq, MuTect2 and Strelka obtained the largest proportion of COSMIC entries as well as the lowest rate of dbSNP presence and high-alternative-alleles-in-control calls, demonstrating their superior sensitivity and accuracy. Combining different callers does increase reliability of candidates, but narrows the list down to very limited range of tumor read depth and variant allele frequency. Calling SNV on UDT-Seq data, which were of much higher read-depth, discovered additional true-positive variations, despite an even more tremendous growth in false positive predictions. Our findings not only provide valuable benchmark for state-of-the-art SNV calling methods, but also shed light on the access to more accurate SNV identification in the future.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Calculation of Tajima's D and other neutrality test statistics from low depth next-generation sequencing data
    Korneliussen, Thorfinn Sand
    Moltke, Ida
    Albrechtsen, Anders
    Nielsen, Rasmus
    BMC BIOINFORMATICS, 2013, 14
  • [42] Next-Generation Anchor Based Phylogeny (NexABP): Constructing phylogeny from Next-generation sequencing data
    Roychowdhury, Tanmoy
    Vishnoi, Anchal
    Bhattacharya, Alok
    SCIENTIFIC REPORTS, 2013, 3
  • [43] Calculation of Tajima’s D and other neutrality test statistics from low depth next-generation sequencing data
    Thorfinn Sand Korneliussen
    Ida Moltke
    Anders Albrechtsen
    Rasmus Nielsen
    BMC Bioinformatics, 14
  • [44] BRCA somatic and germline mutation detection in paraffin embedded ovarian cancers by next-generation sequencing
    Mafficini, Andrea
    Simbolo, Michele
    Parisi, Alice
    Rusev, Borislav
    Luchini, Claudio
    Cataldo, Ivana
    Piazzola, Elena
    Sperandio, Nicola
    Turri, Giona
    Franchi, Massimo
    Tortora, Giampaolo
    Bovo, Chiara
    Lawlor, Rita T.
    Scarpa, Aldo
    ONCOTARGET, 2016, 7 (02) : 1076 - 1083
  • [45] A Protocol for Clinical Validation of Next-Generation Sequencing (NGS) Diagnostic Tests for Somatic Mutation Detection
    Sukhai, M. A.
    Zhang, T.
    Thomas, M.
    Pugh, T.
    Kamel-Reid, S.
    Stockley, T. L.
    JOURNAL OF MOLECULAR DIAGNOSTICS, 2014, 16 (06): : 781 - 781
  • [46] Homologous recombination repair somatic/germline mutation detection in plasma by next-generation sequencing in Chinese solid tumor patients.
    Zhu, Wei
    Chen, Hui
    Zhang, Bei
    Zhao, Xiaochen
    Bai, Yuezong
    CANCER RESEARCH, 2021, 81 (13)
  • [47] A Comparison of Somatic Mutation Calling in Fixed Tumour Tissue Between the Affymetrix OncoScan Array and a PCR-based Next-generation Sequencing Approach
    Wood, H. M.
    Foster, J. M.
    Taylor, M.
    Tinkler-Hundal, E.
    Togneri, F. S.
    Wojtowicz, P.
    Oumie, A.
    Spink, K. G.
    Brew, F.
    Quirke, P.
    JOURNAL OF PATHOLOGY, 2016, 240 : 48 - 48
  • [48] Pisces: an accurate and versatile variant caller for somatic and germline next-generation sequencing data
    Dunn, Tamsen
    Berry, Gwenn
    Emig-Agius, Dorothea
    Jiang, Yu
    Lei, Serena
    Iyer, Anita
    Udar, Nitin
    Chuang, Han-Yu
    Hegarty, Jeff
    Dickover, Michael
    Klotzle, Brandy
    Robbins, Justin
    Bibikova, Marina
    Peeters, Marc
    Stromberg, Michael
    BIOINFORMATICS, 2019, 35 (09) : 1579 - 1581
  • [49] A review of somatic single nucleotide variant calling algorithms for next-generation sequencing data
    Xu, Chang
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2018, 16 : 15 - 24
  • [50] In-depth comparison of different platforms for high throughput sequencing microbiome analyses of gastric mucosa
    Vilchez-Vargas, R.
    Gedgaudas, R.
    Gemmell, M.
    Oosternlinck, B.
    Then, C.
    Bornschein, J.
    Kupcinskas, J.
    Smet, A.
    Hold, G.
    Link, A.
    HELICOBACTER, 2020, 25 : 94 - 95