Weibel's conjecture for twisted K-theory

被引:1
|
作者
Stapleton, Joel [1 ]
机构
[1] Univ Illinois, Chicago, IL 60607 USA
关键词
algebraic K-theory; Brauer groups; excision; BRAUER GROUPS;
D O I
10.2140/akt.2020.5.621
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove Weibel's conjecture for twisted K-theory when twisting by a smooth proper connective dg-algebra. Our main contribution is showing we can kill a negative twisted K-theory class using a projective birational morphism (in the same twisted setting). We extend the vanishing result to relative twisted K-theory of a smooth affine morphism and describe counterexamples to some similar extensions.
引用
收藏
页码:621 / 637
页数:17
相关论文
共 50 条
  • [1] Twisted K-theory and K-theory of bundle gerbes
    Bouwknegt, P
    Carey, AL
    Mathai, V
    Murray, MK
    Stevenson, D
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 228 (01) : 17 - 45
  • [2] Twisted K-Theory and K-Theory of Bundle Gerbes
    Peter Bouwknegt
    Alan L. Carey
    Varghese Mathai
    Michael K. Murray
    Danny Stevenson
    Communications in Mathematical Physics, 2002, 228 : 17 - 49
  • [3] Karoubi's conjecture for the smooth K-theory
    Inassaridze, Hvedri
    Kandelaki, Tamaz
    COMPTES RENDUS MATHEMATIQUE, 2008, 346 (21-22) : 1129 - 1132
  • [4] On Previdi's delooping conjecture for K-theory
    Saito, Sho
    ALGEBRA & NUMBER THEORY, 2015, 9 (01) : 1 - 11
  • [5] Motivic twisted K-theory
    Spitzweck, Markus
    Ostvaer, Paul Arne
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2012, 12 (01): : 565 - 599
  • [6] Twisted Orbifold K-Theory
    Alejandro Adem
    Yongbin Ruan
    Communications in Mathematical Physics, 2003, 237 : 533 - 556
  • [7] Twisted orbifold K-theory
    Adem, A
    Ruan, Y
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 237 (03) : 533 - 556
  • [8] ACTIONS OF K(π, n) SPACES ON K-THEORY AND UNIQUENESS OF TWISTED K-THEORY
    Antieau, Benjamin
    Gepner, David
    Gomez, Jose Manuel
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (07) : 3631 - 3648
  • [9] Bivariant K-theory and the Novikov conjecture
    Higson, N
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2000, 10 (03) : 563 - 581
  • [10] On the isomorphism conjecture in algebraic K-theory
    Bartels, A
    Farrell, T
    Jones, L
    Reich, H
    TOPOLOGY, 2004, 43 (01) : 157 - 213