Bivariant K-theory and the Novikov conjecture

被引:61
|
作者
Higson, N [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
关键词
Group Action; High Signature; Amenable Group; Algebraic Counterpart; Novikov Conjecture;
D O I
10.1007/PL00001630
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Kasparov's bivariant K-theory is used to prove two theorems concerning the Novikov higher signature conjecture. The first generalizes a result of J. Roe and the author on amenable group actions. The second is a C*-algebraic counterpart of a theorem of G. Carlsson and E. Pedersen.
引用
收藏
页码:563 / 581
页数:19
相关论文
共 50 条
  • [1] Bivariant K-theory and the Novikov conjecture
    N. Higson
    Geometric & Functional Analysis GAFA, 2000, 10 : 563 - 581
  • [2] ALGEBRAIC K-THEORY OF SPACES AND THE NOVIKOV-CONJECTURE
    COHEN, RL
    JONES, JDS
    TOPOLOGY, 1990, 29 (03) : 317 - 344
  • [3] Bivariant K-theory for Banach algebras and Baum-Connes conjecture
    Lafforgue, V
    INVENTIONES MATHEMATICAE, 2002, 149 (01) : 1 - 95
  • [4] Topological and Bivariant K-Theory
    Beltita, Daniel
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2009, 54 (01): : 75 - 75
  • [5] THE BIVARIANT K-THEORY OF KASPAROV
    FACK, T
    ASTERISQUE, 1983, (105-) : 149 - 166
  • [6] Bivariant algebraic K-theory
    Cortinas, Guillermo
    Thom, Andreas
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 610 : 71 - 123
  • [7] Continuously controlled algebraic K-theory of spaces and the Novikov conjecture
    Carlsson, G
    Pedersen, EK
    Vogell, W
    MATHEMATISCHE ANNALEN, 1998, 310 (01) : 169 - 180
  • [8] Bivariant K-theory and the Weyl algebra
    Cuntz, J
    K-THEORY, 2005, 35 (1-2): : 93 - 137
  • [9] Bivariant K-theory via correspondences
    Emerson, Heath
    Meyer, Ralf
    ADVANCES IN MATHEMATICS, 2010, 225 (05) : 2883 - 2919
  • [10] Finite decomposition complexity and the integral Novikov conjecture for higher algebraic K-theory
    Ramras, Daniel A.
    Tessera, Romain
    Yu, Guoliang
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2014, 694 : 129 - 178