A Framework for Rewriting Families of String Diagrams

被引:0
|
作者
Zamdzhiev, Vladimir [1 ]
机构
[1] Univ Lorraine, CNRS, INRIA, LORIA, F-54000 Nancy, France
来源
ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE | 2019年 / 288期
关键词
D O I
10.4204/EPTCS.288.6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We describe a mathematical framework for equational reasoning about infinite families of string diagrams which is amenable to computer automation. The framework is based on context-free families of string diagrams which we represent using context-free graph grammars. We model equations between infinite families of diagrams using rewrite rules between context-free grammars. Our framework represents equational reasoning about concrete string diagrams and context-free families of string diagrams using double-pushout rewriting on graphs and context-free graph grammars respectively. We prove that our representation is sound by showing that it respects the concrete semantics of string diagrammatic reasoning and we show that our framework is appropriate for software implementation by proving the membership problem is decidable.
引用
收藏
页码:63 / 76
页数:14
相关论文
共 50 条
  • [11] The Joy of String Diagrams
    Curien, Pierre-Louis
    COMPUTER SCIENCE LOGIC, PROCEEDINGS, 2008, 5213 : 15 - 22
  • [12] A rewriting approach to binary decision diagrams
    Zantema, H
    van de Pol, J
    JOURNAL OF LOGIC AND ALGEBRAIC PROGRAMMING, 2001, 49 (1-2): : 61 - 86
  • [13] String rewriting for double coset systems
    Brown, R
    Ghani, N
    Heyworth, A
    Wensley, CD
    JOURNAL OF SYMBOLIC COMPUTATION, 2006, 41 (05) : 573 - 590
  • [14] Observation of string-rewriting systems
    Cavaliere, Matteo
    Leupold, Peter
    FUNDAMENTA INFORMATICAE, 2006, 74 (04) : 447 - 462
  • [15] Maximally Parallel Contextual String Rewriting
    Serbanuta, Traian Florin
    Dinu, Liviu P.
    REWRITING LOGIC AND ITS APPLICATIONS, WRLA 2016, 2016, 9942 : 152 - 166
  • [16] On Causal Equivalence by Tracing in String Rewriting
    van Oostrom, Vincent
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2022, (354): : 27 - 43
  • [17] Termination of string rewriting with matrix interpretations
    Hofbauer, Dieter
    Waldmann, Johannes
    TERM REWRITING AND APPLICATIONS, PROCEEDINGS, 2006, 4098 : 328 - 342
  • [18] Termination of String Rewriting Proved Automatically
    H. Zantema
    Journal of Automated Reasoning, 2005, 34 : 105 - 139
  • [19] Termination of string rewriting proved automatically
    Zantema, H
    JOURNAL OF AUTOMATED REASONING, 2005, 34 (02) : 105 - 139
  • [20] The derivational complexity of string rewriting systems
    Kobayashi, Yuji
    THEORETICAL COMPUTER SCIENCE, 2012, 438 : 1 - 12