On Bernoulli-Euler modeling of an immersed beam for axisymmetric container parameters measurement

被引:0
|
作者
Sanchez-Diaz, Juan C. [1 ]
Ramirez-Cortes, Juan M. [1 ]
Gomez-Gil, Pilar [2 ]
Rangel-Magdaleno, Jose [1 ]
Peregrina-Barreto, Hayde [2 ]
Cruz-Vega, Israel [1 ]
机构
[1] Natl Inst Astrophys Opt & Elect, Elect Dept, Puebla, Mexico
[2] Natl Inst Astrophys Opt & Elect, Dept Comp Sci, Puebla, Mexico
来源
2018 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC): DISCOVERING NEW HORIZONS IN INSTRUMENTATION AND MEASUREMENT | 2018年
关键词
Liquid level measurement; cantilever beams; Bernoulli Euler beam model; COMSOL; distributed mass; LEVEL; SENSOR; PERFORMANCE; VIBRATION; TUBE;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Parameter measurement of liquids in containers such as level, density and viscosity is a widely investigated field due to its relevance in a variety of industrial fields. In this work an analysis of vibration modes related to liquid parameters for a vertical immersed beam based on a general Bernoulli-Euler beam model for different liquids is presented. Experimental and theoretical results are compared to a Finite Element Model (FEM) simulation implemented in COMSOL, using a distributed mass approach. This analysis aims to characterization of axisymmetric containers using an immersed beam model where the vibration modes are linked to surrounding liquid properties. Results showed a good approximation with an error of 6.5 % in average of the full scale range when the first and second vibration mode are considered.
引用
收藏
页码:1084 / 1089
页数:6
相关论文
共 50 条
  • [41] A new Bernoulli-Euler beam model based on a reformulated strain gradient elasticity theory
    Zhang, G. Y.
    Gao, X-L
    MATHEMATICS AND MECHANICS OF SOLIDS, 2020, 25 (03) : 630 - 643
  • [42] FREQUENCY-DOMAIN STABILITY-CRITERION FOR VIBRATION CONTROL OF THE BERNOULLI-EULER BEAM
    CHAIT, Y
    RADCLIFFE, CJ
    MACCLUER, CR
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 1988, 110 (03): : 303 - 307
  • [43] Modified Bernoulli-Euler laminate beam theory using total effective moment in LIPCA
    Kim, Cheol-Woong
    Lee, Sang-Heon
    Kim, Kee-Joo
    ADVANCES IN COMPOSITE MATERIALS AND STRUCTURES, PTS 1 AND 2, 2007, 334-335 : 413 - +
  • [44] EXACT STIFFNESS MATRIX OF A NONUNIFORM BEAM .1. EXTENSION, TORSION, AND BENDING OF A BERNOULLI-EULER BEAM
    FRIEDMAN, Z
    KOSMATKA, JB
    COMPUTERS & STRUCTURES, 1992, 42 (05) : 671 - 682
  • [45] EXACT BERNOULLI-EULER STATIC STIFFNESS MATRIX FOR A RANGE OF TAPERED BEAM-COLUMNS
    BANERJEE, JR
    WILLIAMS, FW
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1986, 23 (09) : 1615 - 1628
  • [46] Rotation-free isogeometric analysis of an arbitrarily curved plane Bernoulli-Euler beam
    Borkovic, A.
    Kovacevic, S.
    Radenkovic, G.
    Milovanovic, S.
    Guzijan-Dilber, M.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 334 : 238 - 267
  • [47] Bernoulli-Euler Beam Under Action of a Moving Thermal Source: Characteristics of the Dynamic Behavior
    Morozov, N. F.
    Indeitsev, D. A.
    Lukin, A. V.
    Popov, I. A.
    Privalova, O. V.
    Semenov, B. N.
    Shtukin, L. V.
    DOKLADY PHYSICS, 2019, 64 (04) : 185 - 188
  • [48] Geometrically exact static isogeometric analysis of an arbitrarily curved spatial Bernoulli-Euler beam
    Borkovic, A.
    Marussig, B.
    Radenkovic, G.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 390
  • [49] Geometrically exact isogeometric Bernoulli-Euler beam based on the Frenet-Serret frame
    Borkovic, A.
    Gfrerer, M. H.
    Marussig, B.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 405
  • [50] Geometrically exact static isogeometric analysis of arbitrarily curved plane Bernoulli-Euler beam
    Borkovic, A.
    Marussig, B.
    Radenkovic, G.
    THIN-WALLED STRUCTURES, 2022, 170