Multifingered Grasp Planning via Inference in Deep Neural Networks: Outperforming Sampling by Learning Differentiable Models

被引:38
|
作者
Lu, Qingkai [1 ,2 ]
Van der Merwe, Mark [1 ,2 ]
Sundaralingam, Balakumar [1 ,2 ]
Hermans, Tucker [1 ,2 ]
机构
[1] Univ Utah, Sch Comp, Salt Lake City, UT 84112 USA
[2] Univ Utah, Robot Ctr, Salt Lake City, UT 84112 USA
基金
美国国家科学基金会;
关键词
Robots; Planning; Grasping; Visualization; Artificial neural networks; Three-dimensional displays; Optimization; ALGORITHM;
D O I
10.1109/MRA.2020.2976322
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a novel approach to multifingered grasp planning that leverages learned deep neural network (DNN) models. We trained a voxel-based 3D convolutional neural network (CNN) to predict grasp-success probability as a function of both visual information of an object and grasp configuration. From this, we formulated grasp planning as inferring the grasp configuration that maximizes the probability of grasp success. In addition, we learned a prior over grasp configurations as a mixture-density network (MDN) conditioned on our voxel-based object representation. We show that this object-conditional prior improves grasp inference when used with the learned grasp success-prediction network compared to a learned, objectagnostic prior or an uninformed uniform prior. Our work is the first to directly plan high-quality multifingered grasps in configuration space using a DNN without the need of an external planner. We validated our inference method by performing multifinger grasping on a physical robot. Our experimental results show that our planning method outperforms existing grasp-planning methods for neural networks (NNs).
引用
收藏
页码:55 / 65
页数:11
相关论文
共 50 条
  • [21] Accelerating Distributed Inference of Sparse Deep Neural Networks via Mitigating the Straggler Effect
    Mofrad, Mohammad Hasanzadeh
    Melhem, Rami
    Ahmad, Yousuf
    Hammoud, Mohammad
    2020 IEEE HIGH PERFORMANCE EXTREME COMPUTING CONFERENCE (HPEC), 2020,
  • [22] The Contextual Lasso: Sparse Linear Models via Deep Neural Networks
    Thompson, Ryan
    Dezfouli, Amir
    Kohn, Robert
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [23] DIPPM: A Deep Learning Inference Performance Predictive Model Using Graph Neural Networks
    Selvam, Karthick Panner
    Brorsson, Mats
    EURO-PAR 2023: PARALLEL PROCESSING, 2023, 14100 : 3 - 16
  • [24] A Tandem Learning Rule for Effective Training and Rapid Inference of Deep Spiking Neural Networks
    Wu, Jibin
    Chua, Yansong
    Zhang, Malu
    Li, Guoqi
    Li, Haizhou
    Tan, Kay Chen
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (01) : 446 - 460
  • [25] Robotic Motion Planning Based on Deep Reinforcement Learning and Artificial Neural Networks
    Liu, Huashan
    Li, Xiangjian
    Dong, Menghua
    Gu, Yuqing
    Shen, Bo
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2024,
  • [26] Fast Learning of Deep Neural Networks via Singular Value Decomposition
    Cai, Chenghao
    Ke, Dengfeng
    Xu, Yanyan
    Su, Kaile
    PRICAI 2014: TRENDS IN ARTIFICIAL INTELLIGENCE, 2014, 8862 : 820 - 826
  • [27] Computationally Efficient Training of Deep Neural Networks via Transfer Learning
    Oyen, Diane
    REAL-TIME IMAGE PROCESSING AND DEEP LEARNING 2019, 2019, 10996
  • [28] Learning regularization parameters of inverse problems via deep neural networks
    Afkham, Babak Maboudi
    Chung, Julianne
    Chung, Matthias
    INVERSE PROBLEMS, 2021, 37 (10)
  • [29] ANRL: Attributed Network Representation Learning via Deep Neural Networks
    Zhang, Zhen
    Yang, Hongxia
    Bu, Jiajun
    Zhou, Sheng
    Yu, Pinggang
    Zhang, Jianwei
    Ester, Martin
    Wang, Can
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 3155 - 3161
  • [30] ROBUST LEARNING VIA ENSEMBLE DENSITY PROPAGATION IN DEEP NEURAL NETWORKS
    Carannante, Giuseppina
    Dera, Dimah
    Rasool, Ghulam
    Bouaynaya, Nidhal C.
    Mihaylova, Lyudmila
    PROCEEDINGS OF THE 2020 IEEE 30TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2020,