A 3D Point Correspondences Uncertainty Aware RGB-D SLAM System

被引:0
|
作者
Pei, Fujun [1 ,2 ]
Zhou, Zhongxiang [1 ,2 ]
Zhu, Mingjun [1 ,2 ]
Zhao, Ning [1 ,2 ]
机构
[1] Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
[2] Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
关键词
SLAM; GMM; LMedS; Chi-Square distribution;
D O I
10.1109/ccdc.2019.8832963
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, much research has been done on RGB-D simultaneous localization and mapping (SLAM) system. Mismatching and depth measurement uncertainty are key factors affecting the accuracy of RGB-D SLAM algorithms. Given that, we propose a 3D point correspondences uncertainty aware SLAM system. Firstly, we conduct ORB feature extraction and matching. Secondly. 3D positions of those pair points are reconstructed by combing depth information with Gaussian Mixture Model (GMM) and outliers are rejected and the initial guess of camera motion can be provided based on LMedS. Under the assumption of Chi-Square distribution, the motion results are further optimized by using Mahalanobis distance and Chi-Square test. Besides, the camera motion trajectory is globally optimized by pose graph. Finally, experiment results prove the proposed method can improve the accuracy of localization and mapping.
引用
收藏
页码:1623 / 1627
页数:5
相关论文
共 50 条
  • [1] 3D Planar RGB-D SLAM System
    ElGhor, Hakim ElChaoui
    Roussel, David
    Ababsa, Fakhreddine
    Bouyakhf, El-Houssine
    ADVANCED CONCEPTS FOR INTELLIGENT VISION SYSTEMS, ACIVS 2016, 2016, 10016 : 486 - 497
  • [2] CG-SLAM: Efficient Dense RGB-D SLAM in a Consistent Uncertainty-Aware 3D Gaussian Field
    Hu, Jiarui
    Chen, Xianhao
    Feng, Boyin
    Li, Guanglin
    Yang, Liangjing
    Bao, Hujun
    Zhang, Guofeng
    Cui, Zhaopeng
    COMPUTER VISION - ECCV 2024, PT XXV, 2025, 15083 : 93 - 112
  • [3] A ROBUST RGB-D SLAM SYSTEM FOR 3D ENVIRONMENT WITH PLANAR SURFACES
    Su, Po-Chang
    Shen, Ju
    Cheung, Sen-ching S.
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 275 - 279
  • [4] 3D Visual SLAM using RGB-D Camera
    Krerngkamjornkit, Rapee
    Simic, Milan
    SMART DIGITAL FUTURES 2014, 2014, 262 : 533 - 544
  • [5] An Evaluation of the RGB-D SLAM System
    Endres, Felix
    Hess, Juergen
    Engelhard, Nikolas
    Sturm, Juergen
    Cremers, Daniel
    Burgard, Wolfram
    2012 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2012, : 1691 - 1696
  • [6] A Benchmark for RGB-D Visual Odometry, 3D Reconstruction and SLAM
    Handa, Ankur
    Whelan, Thomas
    McDonald, John
    Davison, Andrew J.
    2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2014, : 1524 - 1531
  • [7] SLAM USING 3D RECONSTRUCTION VIA A VISUAL RGB & RGB-D SENSORY INPUT
    Wurdemann, Helge A.
    Georgiou, Evangelos
    Cui, Lei
    Dai, Jian S.
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2011, VOL 3, PTS A AND B, 2012, : 615 - 622
  • [8] Extended GrabCut for 3D and RGB-D Point Clouds
    Sallem, Nizar K.
    Devy, Michel
    ADVANCED CONCEPTS FOR INTELLIGENT VISION SYSTEMS, ACIVS 2013, 2013, 8192 : 354 - 365
  • [9] Some Improvements in the RGB-D SLAM System
    Hieu Pham Quang
    Ngoc Ly Quoc
    2015 IEEE RIVF INTERNATIONAL CONFERENCE ON COMPUTING & COMMUNICATION TECHNOLOGIES - RESEARCH, INNOVATION, AND VISION FOR THE FUTURE (RIVF), 2015, : 112 - 116
  • [10] Modeling spatial uncertainty of point features in feature-based RGB-D SLAM
    Belter, Dominik
    Nowicki, Michal
    Skrzypczynski, Piotr
    MACHINE VISION AND APPLICATIONS, 2018, 29 (05) : 827 - 844