Molecular mechanism and characterization of self-assembly of feather keratin gelation

被引:36
|
作者
Esparza, Yussef [1 ]
Ullah, Aman [1 ]
Wu, Jianping [1 ]
机构
[1] Univ Alberta, Dept Agr Food & Nutr Sci, 4-10 Ag Bldg, Edmonton, AB T6G 2P5, Canada
关键词
Feathers; Keratin; Hydrogels; Rheology; Thiol-chemistry; Scaffolds; SODIUM DODECYL-SULFATE; HUMAN HAIR KERATIN; PROTEINS; UREA; EXTRACTION; SCAFFOLDS; HYDROGELS; FABRICATION; FILMS; GEL;
D O I
10.1016/j.ijbiomac.2017.08.168
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Protein gels with controlled viscoelastic properties could find numerous material and biomedical applications. Feather keratin is naturally abundant protein while its gelation property has not been explored. In this study hydrogel from fully reduced feather keratin was prepared by dialysis. The objectives of this work were to study the molecular mechanism of self-assembly of feather keratin gel and to characterize the structural and viscoelastic properties of hydrogels prepared under various pHs (3-9) and temperatures (50-90 degrees C). Re-oxidation of free cysteine thiols and formation of hydrophobic interactions and hydrogen bond were determined as the main stabilizing forces in self-assembly of feather keratin gel. Adding thiol blocking agent of N-ethylmaleimide leads to reduced storage modulus of keratin gel; gelation was completely inhibited at 82% blockage of free thiols. Increasing temperature decreased storage modulus, while gelation at pH 3 resulted in stiffer gels compared to pHs of 5,7 and 9. Feather keratin gels with tunable viscoelastic properties could find applications as engineered scaffolds for different tissues. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:290 / 296
页数:7
相关论文
共 50 条
  • [31] Design and characterization of novel systems for molecular nanoscale self-assembly
    Burtman, Vladimir
    Vardeny, Zeev Valy
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2008, 47 (02) : 1165 - 1172
  • [32] Computing by molecular self-assembly
    Jonoska, Natasa
    Seeman, Nadrian C.
    INTERFACE FOCUS, 2012, 2 (04) : 504 - 511
  • [33] Molecular Self-Assembly of the α-Carboxysome
    Oltrogge, Luke M.
    Chaijarasphong, Thawatchai
    Savage, David F.
    BIOPHYSICAL JOURNAL, 2018, 114 (03) : 63A - 63A
  • [34] MOLECULAR SELF-ASSEMBLY PROCESSES
    STODDART, JF
    CIBA FOUNDATION SYMPOSIA, 1991, 158 : 5 - 22
  • [35] MOLECULAR RECOGNITION AND SELF-ASSEMBLY
    STODDART, JF
    ANALES DE QUIMICA, 1993, 89 (01): : 51 - 56
  • [36] Control of molecular self-assembly
    Grover, Martha A.
    JOURNAL OF PROCESS CONTROL, 2015, 27 : 36 - 37
  • [37] Molecular packing and self-assembly
    Nagarajan, Ramanathan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [38] Molecular self-assembly: The future
    Boden, N
    SELF-ASSEMBLY, 2003, : 42 - 42
  • [39] Introduction: Molecular Self-Assembly
    Pochan, Darrin
    Scherman, Oren
    CHEMICAL REVIEWS, 2021, 121 (22) : 13699 - 13700
  • [40] Molecular Self-Assembly on Graphene
    MacLeod, J. M.
    Rosei, F.
    SMALL, 2014, 10 (06) : 1038 - 1049