DIAGRAMS FOR RELATIVE TRISECTIONS

被引:24
|
作者
Castro, Nickolas A. [1 ]
Gay, David T. [2 ]
Pinzon-Caicedo, Juanita [3 ]
机构
[1] Univ Calif Davis, Dept Math, One Shields Ave, Davis, CA 95616 USA
[2] Euclid Lab, 160 Milledge Terrace, Athens, GA 30606 USA
[3] NC State Univ, Dept Math, 2108 Sas Hall, Raleigh, NC 27695 USA
关键词
trisection; open book; Heegaard diagram; monodromy; 3-manifold; 4-manifold; RATIONAL BLOWDOWNS; 4-MANIFOLDS; CURVES;
D O I
10.2140/pjm.2018.294.275
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish a correspondence between trisections of smooth, compact, oriented 4-manifolds with connected boundary and diagrams describing these trisected 4-manifolds. Such a diagram comes in the form of a compact, oriented surface with boundary together with three tuples of simple closed curves, with possibly fewer curves than the genus of the surface, satisfying a pairwise condition of being standard. This should be thought of as the 4-dimensional analog of a sutured Heegaard diagram for a sutured 3-manifold. We also give many foundational examples.
引用
收藏
页码:275 / 305
页数:31
相关论文
共 50 条
  • [41] Group trisections and smooth 4-manifolds
    Abrams, Aaron
    Gay, David T.
    Kirby, Robion
    GEOMETRY & TOPOLOGY, 2018, 22 (03) : 1537 - 1545
  • [42] CLASSIFICATION OF TRISECTIONS AND THE GENERALIZED PROPERTY R CONJECTURE
    Meier, Jeffrey
    Schirmer, Trent
    Zupan, Alexander
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (11) : 4983 - 4997
  • [43] Compatible relative open books on relative contact pairs via generalized square bridge diagrams
    M. F. Arıkan
    İ. Ö. Taşpınar
    Acta Mathematica Hungarica, 2024, 172 : 80 - 118
  • [44] Compatible relative open books on relative contact pairs via generalized square bridge diagrams
    Arikan, M. F.
    Taspinar, I. O.
    ACTA MATHEMATICA HUNGARICA, 2024, 172 (01) : 80 - 118
  • [45] Bridge trisections in CP2 and the Thom conjecture
    Lambert-Cole, Peter
    GEOMETRY & TOPOLOGY, 2020, 24 (03) : 1571 - 1614
  • [46] Kirby-Thompson distance for trisections of knotted surfaces
    Blair, Ryan
    Campisi, Marion
    Taylor, Scott A.
    Tomova, Maggy
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2022, 105 (02): : 765 - 793
  • [47] Characterizing Dehn surgeries on links via trisections
    Meier, Jeffrey
    Zupan, Alexander
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (43) : 10887 - 10893
  • [48] Pseudo-trisections of four-manifolds with boundary
    Fushida-Hardy, Shintaro
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2025,
  • [49] Trisections of 4-manifolds via Lefschetz fibrations
    Castro, Nickolas A.
    Ozbagci, Burak
    MATHEMATICAL RESEARCH LETTERS, 2019, 26 (02) : 383 - 420
  • [50] Saliency Diagrams a tool for analyzing animation through the relative importance of keyposes
    Nghiem, Nicolas
    Roberts, Richard
    Lewis, J. P.
    Noh, Junyong
    SA'19: SIGGRAPH ASIA 2019 TECHNICAL BRIEFS, 2019, : 49 - 52