Time-space tradeoffs in the counting hierarchy

被引:23
|
作者
Allender, E [1 ]
Koucky, M [1 ]
Ronneburger, D [1 ]
Roy, S [1 ]
Vinay, V [1 ]
机构
[1] Rutgers State Univ, Dept Comp Sci, Piscataway, NJ 08855 USA
关键词
D O I
10.1109/CCC.2001.933896
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We extend the lower bound techniques of [14], to the unbounded-error probabilistic model. A key step in the argument is a generalization of Nepomnjascii's theorem front the Boolean setting to the arithmetic setting. This generalization is made possible, due to the recent discovery of logspace-uniform TO circuits for iterated multiplication [9]. Here is an example of the sort of lower bounds that we obtain: we show that MAJ.MAJSAT is not contained in PrTiSp(n(1+o(1)), n(epsilon)) for any epsilon < 1. We also extend a lower bound of [14], from showing that SAT does not have uniform NC1 circuits of size n(1+o(1)), to a similar result for SAC(1) circuits.
引用
收藏
页码:295 / 302
页数:8
相关论文
共 50 条
  • [41] Time-space lower bounds for the polynomial-time hierarchy on randomized machines
    Diehl, Scott
    van Melkebeek, Dieter
    SIAM JOURNAL ON COMPUTING, 2006, 36 (03) : 563 - 594
  • [42] Time-space tradeoffs, multiparty communication complexity, and nearest-neighbor problems
    Beame, P
    Vee, E
    17TH ANNUAL IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY, PROCEEDINGS, 2002, : 18 - 18
  • [43] QUANTUM AND CLASSICAL STRONG DIRECT PRODUCT THEOREMS AND OPTIMAL TIME-SPACE TRADEOFFS
    Klauck, Hartmut
    Spalek, Robert
    De Wolf, Ronald
    SIAM JOURNAL ON COMPUTING, 2007, 36 (05) : 1472 - 1493
  • [44] Time-Space Tradeoffs and Short Collisions in Merkle-Damgard Hash Functions
    Akshima
    Cash, David
    Drucker, Andrew
    Wee, Hoeteck
    ADVANCES IN CRYPTOLOGY - CRYPTO 2020, PT I, 2020, 12170 : 157 - 186
  • [45] Ablowitz-Ladik hierarchy of integrable equations on a time-space scale
    Hovhannisyan, Gro
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (10)
  • [46] On Time-Space Tradeoffs for Bounded-Length Collisions in Merkle-Damgard Hashing
    Ghoshal, Ashrujit
    Komargodski, Ilan
    ADVANCES IN CRYPTOLOGY - CRYPTO 2022, PT III, 2022, 13509 : 161 - 191
  • [47] Optimal Security for Keyed Hash Functions: Avoiding Time-Space Tradeoffs for Finding Collisions
    Freitag, Cody
    Ghoshal, Ashrujit
    Komargodski, Ilan
    ADVANCES IN CRYPTOLOGY - EUROCRYPT 2023, PT IV, 2023, 14007 : 440 - 469
  • [48] On Time-Space Tradeoffs for Bounded-Length Collisions in Merkle-Damgard Hashing
    Ghoshal, Ashrujit
    Komargodski, Ilan
    COMPUTATIONAL COMPLEXITY, 2023, 32 (02)
  • [49] RELATIVIZING TIME, SPACE, AND TIME-SPACE
    BOOK, RV
    WILSON, CB
    XU, MR
    SIAM JOURNAL ON COMPUTING, 1982, 11 (03) : 571 - 581
  • [50] A New Quantum Lower Bound Method, with Applications to Direct Product Theorems and Time-Space Tradeoffs
    Andris Ambainis
    Robert Špalek
    Ronald de Wolf
    Algorithmica, 2009, 55 : 422 - 461