Time-space tradeoffs in the counting hierarchy

被引:23
|
作者
Allender, E [1 ]
Koucky, M [1 ]
Ronneburger, D [1 ]
Roy, S [1 ]
Vinay, V [1 ]
机构
[1] Rutgers State Univ, Dept Comp Sci, Piscataway, NJ 08855 USA
关键词
D O I
10.1109/CCC.2001.933896
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We extend the lower bound techniques of [14], to the unbounded-error probabilistic model. A key step in the argument is a generalization of Nepomnjascii's theorem front the Boolean setting to the arithmetic setting. This generalization is made possible, due to the recent discovery of logspace-uniform TO circuits for iterated multiplication [9]. Here is an example of the sort of lower bounds that we obtain: we show that MAJ.MAJSAT is not contained in PrTiSp(n(1+o(1)), n(epsilon)) for any epsilon < 1. We also extend a lower bound of [14], from showing that SAT does not have uniform NC1 circuits of size n(1+o(1)), to a similar result for SAC(1) circuits.
引用
收藏
页码:295 / 302
页数:8
相关论文
共 50 条
  • [1] Time-space tradeoffs for counting NP solutions modulo integers
    Williams, R. Ryan
    COMPUTATIONAL COMPLEXITY, 2008, 17 (02) : 179 - 219
  • [2] Time-Space Tradeoffs for Counting NP Solutions Modulo Integers
    R. Ryan Williams
    computational complexity, 2008, 17 : 179 - 219
  • [3] Time-space tradeoffs for counting NP solutions modulo integers
    Williams, Ryan
    TWENTY-SECOND ANNUAL IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY, PROCEEDINGS, 2007, : 70 - 82
  • [4] Time-space tradeoffs for satisfiability
    Fortnow, L
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2000, 60 (02) : 337 - 353
  • [5] TIME-SPACE TRADEOFFS FOR SET OPERATIONS
    PATTSHAMIR, B
    PELEG, D
    THEORETICAL COMPUTER SCIENCE, 1993, 110 (01) : 99 - 129
  • [6] Time-space tradeoffs for branching programs
    Beame, P
    Jayram, TS
    Saks, M
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2001, 63 (04) : 542 - 572
  • [7] Time-space tradeoffs for polynomial evaluation
    Aldaz, M
    Heintz, J
    Matera, G
    Montaña, JL
    Pardo, LM
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (10): : 907 - 912
  • [8] Time-space tradeoffs for nondeterministic computation
    Fortnow, L
    van Melkebeek, D
    15TH ANNUAL IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY, PROCEEDINGS, 2000, : 2 - 13
  • [9] Time-space tradeoffs for branching programs
    Beame, P
    Saks, M
    Thathachar, JS
    39TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1998, : 254 - 263
  • [10] 2 TIME-SPACE TRADEOFFS FOR ELEMENT DISTINCTNESS
    KARCHMER, M
    THEORETICAL COMPUTER SCIENCE, 1986, 47 (03) : 237 - 246