Energy Scattering for Schrodinger Equation with Exponential Nonlinearity in Two Dimensions

被引:1
|
作者
Wang, Shuxia [1 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
关键词
BLOW-UP; GORDON; SPACE;
D O I
10.1155/2013/968603
中图分类号
学科分类号
摘要
When the spatial dimensions n = 2, the initial data u(0) epsilon H-1, and the Hamiltonian H(u(0)) <= 1, we prove that the scattering operator is well defined in the whole energy space H-1(R-2) for nonlinear Schrodinger equation with exponential nonlinearity (e(lambda vertical bar u vertical bar 2) - 1)u, where 0 < lambda < 4 pi.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Two efficient exponential energy-preserving schemes for the fractional Klein-Gordon Schrodinger equation
    Guo, Yantao
    Fu, Yayun
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 209 : 169 - 183
  • [42] AN EXPLICIT AND SYMMETRIC EXPONENTIAL WAVE INTEGRATOR FOR THE NONLINEAR SCHRODINGER EQUATION WITH LOW REGULARITY POTENTIAL AND NONLINEARITY
    Bao, Weizhu
    Wang, Chushan
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2024, 62 (04) : 1901 - 1928
  • [43] Scattering for the one-dimensional Klein-Gordon equation with exponential nonlinearity
    Ikeda, Masahiro
    Inui, Takahisa
    Okamoto, Mamoru
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2020, 17 (02) : 295 - 354
  • [44] Scattering of a 2D Schrodinger equation with exponential growth in the conformal space
    Saanouni, Tarek
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2010, 33 (08) : 1046 - 1058
  • [45] The Schrodinger Equation with a Mixed Type Nonlinearity
    Venkov, George
    APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE '09), 2009, 1184 : 169 - 176
  • [46] SCHRODINGER EQUATION WITH NONLINEARITY OF INTEGRAL TYPE
    BAILLON, JB
    CAZENAVE, T
    FIGUEIRA, M
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 284 (16): : 939 - 942
  • [47] OPTIMAL NONLINEARITY CONTROL OF SCHRODINGER EQUATION
    Wang, Kai
    Zhao, Dun
    Feng, Binhua
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2018, 7 (02): : 317 - 334
  • [48] A generalized two dimensional Emden-Fowler equation with exponential nonlinearity
    Dong Ye
    Feng Zhou
    Calculus of Variations and Partial Differential Equations, 2001, 13 : 141 - 158
  • [49] A generalized two dimensional Emden-Fowler equation with exponential nonlinearity
    Ye, D
    Zhou, F
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2001, 13 (02) : 141 - 158
  • [50] Long range scattering for the complex-valued Klein-Gordon equation with quadratic nonlinearity in two dimensions
    Masaki, Satoshi
    Segata, Jun-ichi
    Uriya, Kota
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 139 : 177 - 203