Au@Ag Nanoparticles: Halides Stabilize {100} Facets

被引:136
|
作者
Gomez-Grana, Sergio [1 ]
Goris, Bart [2 ]
Altantzis, Thomas [2 ]
Fernandez-Lopez, Cristina [1 ]
Carbo-Argibay, Enrique [1 ]
Guerrero-Martinez, Andres [1 ,3 ]
Almora-Barrios, Neyvis [4 ]
Lopez, Nuria [4 ]
Pastoriza-Santos, Isabel [1 ]
Perez-Juste, Jory [1 ]
Bals, Sara [2 ]
Van Tendeloo, Gustaaf [2 ]
Liz-Marzan, Luis M. [1 ,5 ,6 ]
机构
[1] Univ Vigo, Dept Quim Fis, Vigo 36310, Spain
[2] Univ Antwerp, EMAT, B-2020 Antwerp, Belgium
[3] Univ Complutense Madrid, Dept Phys Chem 1, E-28040 Madrid, Spain
[4] ICIQ, Inst Chem Res Catalonia, Tarragona 43007, Spain
[5] CIC BiomaGUNE, BioNanoPlasmon Lab, Donostia San Sebastian 20009, Spain
[6] Basque Fdn Sci, Ikerbasque, Bilbao 48011, Spain
来源
基金
欧洲研究理事会;
关键词
SILVER BROMIDE COMPLEX; CORE-SHELL NANOCUBES; GOLD NANORODS; CRYSTALLINE-STRUCTURE; SEEDED GROWTH; SHAPE; MECHANISM; EVOLUTION; ADLAYERS; PLASMONS;
D O I
10.1021/jz401269w
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Seed-mediated growth is the most efficient methodology to control the size and shape of colloidal metal nanoparticles. In this process, the final nanocrystal shape is defined by the crystalline structure of the initial seed as well as by the presence of ligands and other additives that help to stabilize certain crystallographic facets. We analyze here the growth mechanism in aqueous solution of silver shells on presynthesized gold nanoparticles displaying various well-defined crystalline structures and morphologies. A thorough three-dimensional electron microscopy characterization of the morphology and internal structure of the resulting core-shell nanocrystals indicates that {100} facets are preferred for the outer silver shell, regardless of the morphology and crystallinity of the gold cores. These results are in agreement with theoretical analysis based on the relative surface energies of the exposed facets in the presence of halide ions.
引用
收藏
页码:2209 / 2216
页数:8
相关论文
共 50 条
  • [31] A highly sensitive SERS probe for bisphenol A detection based on functionalized Au@Ag nanoparticles
    Wang, Chun-Yang
    Zeng, Yi
    Shen, Ai-Guo
    Hu, Ji-Ming
    ANALYTICAL METHODS, 2018, 10 (47) : 5622 - 5628
  • [32] Au@Ag Core@Shell Nanoparticles Synthesized with Rumex hymenosepalus as Antimicrobial Agent
    Jesús Mauro Adolfo Villalobos-Noriega
    Ericka Rodríguez-León
    César Rodríguez-Beas
    Eduardo Larios-Rodríguez
    Maribel Plascencia-Jatomea
    Aarón Martínez-Higuera
    Heriberto Acuña-Campa
    Alfonso García-Galaz
    Roberto Mora-Monroy
    Francisco Javier Alvarez-Cirerol
    Blanca Esthela Rodríguez-Vázquez
    Roberto Carlos Carillo-Torres
    Ramón A. Iñiguez-Palomares
    Nanoscale Research Letters, 16
  • [33] Au@Ag Core@Shell Nanoparticles Synthesized with Rumex hymenosepalus as Antimicrobial Agent
    Villalobos-Noriega, Jesus Mauro Adolfo
    Rodriguez-Leon, Ericka
    Rodriguez-Beas, Cesar
    Larios-Rodriguez, Eduardo
    Plascencia-Jatomea, Maribel
    Martinez-Higuera, Aaron
    Acuna-Campa, Heriberto
    Garcia-Galaz, Alfonso
    Mora-Monroy, Roberto
    Alvarez-Cirerol, Francisco Javier
    Rodriguez-Vazquez, Blanca Esthela
    Carillo-Torres, Roberto Carlos
    Iniguez-Palomares, Ramon A.
    NANOSCALE RESEARCH LETTERS, 2021, 16 (01):
  • [34] One-Step Photochemical Green Synthesis of Water-Dispersible Ag, Au, and Au@Ag Core-Shell Nanoparticles
    Perez-Lloret, Marta
    Fraix, Aurore
    Petralia, Salvatore
    Conoci, Sabrina
    Tafani, Virginie
    Cutrone, Giovanna
    Vargas-Berenguel, Antonio
    Gref, Ruxandra
    Sortino, Salvatore
    CHEMISTRY-A EUROPEAN JOURNAL, 2019, 25 (64) : 14638 - 14643
  • [35] Plasmon Mapping in Au@Ag Nanocube Assemblies
    Goris, Bart
    Guzzinati, Giulio
    Fernandez-Lopez, Cristina
    Perez-Juste, Jorge
    Liz-Marzan, Luis M.
    Truegler, Andreas
    Hohenester, Ulrich
    Verbeeck, Jo
    Bals, Sara
    Van Tendeloo, Gustaaf
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (28): : 15356 - 15362
  • [36] LSPR sensing for in situ monitoring the Ag dissolution of Au@Ag core-shell nanoparticles in biological environments
    Zhu, Hu
    Lin, Mian
    Li, Yang
    Duan, Kairui
    Hu, Jiajun
    Chen, Chunbo
    Yu, Zhiqiang
    Lee, Bae Hoon
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2024, 310
  • [37] Au@Ag Nanopencil with Au Tip and Au@Ag Rod: Multimodality Plasmonic Nanoprobe based on Asymmetric Etching for the Detection of SCN- and ClO-
    He, Zhao
    Zhu, Jian
    Li, Xin
    Weng, Guo-Jun
    Li, Jian-Jun
    Zhao, Jun-Wu
    SMALL, 2023, 19 (38)
  • [38] Naked-Eye Detection of Morphine by Au@Ag Nanoparticles-Based Colorimetric Chemosensors
    Rohani Bastami, Tahereh
    Bayat, Mansour
    Paolesse, Roberto
    SENSORS, 2022, 22 (05)
  • [39] Sensitive colorimetric detection of glucose and cholesterol by using Au@Ag core-shell nanoparticles
    Zhang, Xuehong
    Wei, Min
    Lv, Bingjing
    Liu, Yuanjian
    Liu, Xu
    Wei, Wei
    RSC ADVANCES, 2016, 6 (41): : 35001 - 35007
  • [40] Au@Ag core/shell nanoparticles prepared by laser‐assisted method for optical limiting applications
    Ayman M. Mostafa
    Eman A. Mwafy
    Nasser S. Awwad
    Hala A. Ibrahium
    Journal of Materials Science: Materials in Electronics, 2021, 32 : 14728 - 14739