Restricted Percolation Critical Exponents in High Dimensions

被引:6
|
作者
Chatterjee, Shirshendu [1 ,2 ]
Hanson, Jack [3 ]
机构
[1] City Univ New York, City Coll, Dept Math, 160 Convent Ave,NAC 4-114B, New York, NY 10031 USA
[2] City Univ New York, Grad Ctr, New York, NY 10016 USA
[3] City Univ New York, City Coll, Dept Math, 160 Convent Ave,NAC 6/292, New York, NY 10031 USA
基金
美国国家科学基金会;
关键词
INCIPIENT INFINITE CLUSTER; CRITICAL-BEHAVIOR; SCALING LIMIT; INEQUALITIES; PROBABILITY; WALK;
D O I
10.1002/cpa.21938
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Despite great progress in the study of critical percolation onDOUBLE-STRUCK CAPITAL Z(d)fordlarge, properties of critical clusters in high-dimensional fractional spaces and boxes remain poorly understood, unlike the situation in two dimensions. Closely related models such as critical branching random walk give natural conjectures for the value of the relevant high-dimensional critical exponents; see in particular the conjecture by Kozma-Nachmias that the probability that0and(n,n,n, horizontal ellipsis )are connected within[-n,n](d)scales asn(-2 - 2d). In this paper, we study the properties of critical clusters in high-dimensional half-spaces and boxes. In half-spaces, we show that the probability of an open connection ("arm") from0to the boundary of a sidelengthnbox scales asn(-3). We also find the scaling of the half-space two-point function (the probability of an open connection between two vertices) and the tail of the cluster size distribution. In boxes, we obtain the scaling of the two-point function between vertices which are any macroscopic distance away from the boundary. Our argument involves a new application of the "mass transport" principle which we expect will be useful to obtain quantitative estimates for a range of other problems. (c) 2020 Wiley Periodicals LLC
引用
收藏
页码:2370 / 2429
页数:60
相关论文
共 50 条
  • [21] Asymptotic behavior of the critical probability for ρ-percolation in high dimensions
    Harry Kesten
    Zhong-Gen Su
    Probability Theory and Related Fields, 2000, 117 : 419 - 447
  • [22] CRITICAL EXPONENTS IN 3 DIMENSIONS
    TSUNETO, T
    UENO, S
    PROGRESS OF THEORETICAL PHYSICS, 1975, 54 (05): : 1570 - 1572
  • [23] CRITICAL EXPONENTS IN 3.99 DIMENSIONS
    WILSON, KG
    FISHER, ME
    PHYSICAL REVIEW LETTERS, 1972, 28 (04) : 240 - &
  • [24] Critical Exponents in Zero Dimensions
    A. Alexakis
    F. Pétrélis
    Journal of Statistical Physics, 2012, 149 : 738 - 753
  • [25] Critical Exponents in Zero Dimensions
    Alexakis, A.
    Petrelis, F.
    JOURNAL OF STATISTICAL PHYSICS, 2012, 149 (04) : 738 - 753
  • [26] Critical exponents for a percolation model on transient graphs
    Alexander Drewitz
    Alexis Prévost
    Pierre-François Rodriguez
    Inventiones mathematicae, 2023, 232 : 229 - 299
  • [27] Universal critical exponents in percolation systems with tunneling
    Baskin, E.
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2006, 352 (9-20) : 1117 - 1121
  • [28] CRITICAL EXPONENTS FOR PERCOLATION CONDUCTIVITY IN RESISTOR NETWORKS
    WEBMAN, I
    JORTNER, J
    COHEN, MH
    PHYSICAL REVIEW B, 1977, 16 (06): : 2593 - 2596
  • [29] CRITICAL EXPONENTS AND CRITICAL DIMENSIONS FOR POLYHARMONIC OPERATORS
    PUCCI, P
    SERRIN, J
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1990, 69 (01): : 55 - 83
  • [30] Critical exponents for two-dimensional percolation
    Smirnov, S
    Werner, W
    MATHEMATICAL RESEARCH LETTERS, 2001, 8 (5-6) : 729 - 744